Новости Библиотека Учёные Ссылки Карта сайта О проекте


Пользовательский поиск







предыдущая главасодержаниеследующая глава

ГЛАВА 8. ОПТИКА ФРЕНЕЛЯ

ВОЛНОВАЯ ТЕОРИЯ

1. ПРИНЦИП ИНТЕРФЕРЕНЦИИ

Томас Юнг (1773-1829), врач по профессии, человек с весьма разносторонними интересами, известный также как египтолог, стал заниматься теорией света в связи со своими исследованиями человеческого голоса. Эта тема была еще предметом его диссертации по медицине. Его критическому уму теория Ньютона представлялась совершенно неудовлетворительной. Особенно неприемлемым он считал постоянство скорости световых частиц независимо от того, испущены ли они таким крошечным источником, как тлеющий уголек, или таким громадным источником, как Солнце. А более всего представлялась ему неясной и недостаточной ньютоновская теория «приступов» (см. гл. 6), с помощью которой Ньютон пытался объяснить окрашивание тонких пластин. Воспроизведя это явление и поразмыслив над ним, Юнг пришел к гениальной мысли о возможности интерпретации этого явления как наложения света, отраженного от первой поверхности тонкой пластины, и света, прошедшего в пластину, отраженного от второй ее поверхности и вышедшего затем через первую; такое наложение могло привести к ослаблению или к усилению падающего монохроматического света.

Точно не известно, каким образом Юнг пришел к своей идее наложения; возможно, это произошло в результате исследования звуковых биений (см. гл. 6, § 8), при которых наблюдается периодическое усиление и ослабление звука, воспринимаемого ухом. Как бы то ни было, в четырех докладах, представленных Королевскому обществу с 1801 по 1803 г., объединенных несколько лет спустя в обобщающей работе «A course of lectures on natural philosophy and the mechanical arts» («Курс лекций по естественной философии и механическому искусству»), вышедшей в Лондоне в 1807 г., Юнг приводит результаты своих теоретических и экспериментальных исследований. Он несколько раз приводит цитату из XXIV предложения третьей книги «Начал» Ньютона, в которой аномальные приливы, наблюдавшиеся Галлеем на Филиппинском архипелаге, объясняются Ньютоном как результат наложения волн. Исходя из этого отдельного примера, Юнг вводит общий принцип интерференции.

«Представьте себе ряд одинаковых волн, бегущих по поверхности озера с определенной постоянной скоростью и попадающих в узкий канал, ведущий к выходу из озера. Представьте себе далее, что по какой-либо иной аналогичной причине возбуждена другая серия волн той же величины, приходящих к тому же каналу с той же скоростью одновременно с первой системой волн. Ни одна из этих двух систем не нарушит другой, но их действия сложатся: если они подойдут к каналу таким образом, что вершины одной системы волн совпадут с вершинами другой системы, то они вместе образуют совокупность волн большей величины; если же вершины одной системы волн будут расположены в местах провалов другой системы, то они в точности заполнят эти провалы и поверхность воды в канале останется ровной. Так вот, я полагаю, что подобные явления имеют место, когда смешиваются две порции света; и это наложение я называю общим законом интерференции света» (Thomas Young, An Account of some case of the productions of Colours not hitherto described, Phil. Transactions of the Roy. Soc. of London, 92, 387 (1802)).

Для получения интерференции нужно, чтобы оба световых луча исходили из одного и того же источника (чтобы у них был совершенно одинаковый период) и после прохождения различного пути попадали в одну и ту же точку и шли там почти параллельно.

Значит, продолжает Юнг, когда две части света общего происхождения попадают в глаз по различным путям, идя почти в одинаковом направлении, луч приобретает максимальную интенсивность при условии, что разность путей лучей равна кратному числу некоторой определенной длины, и имеет минимальную интенсивность в промежуточном случае. Эта характерная длина различна для света различных цветов.

В 1802 г. Юнг подкрепил свой принцип интерференции классическим опытом «с двумя отверстиями», возможно поставленным под влиянием аналогичного опыта Гримальди, который, однако, не привел к открытию интерференции из-за особенностей применявшейся установки. Опыт Юнга общеизвестен: в прозрачном экране кончиком булавки прокалываются два близка расположенных одно к другому отверстия, которые освещаются солнечным светом, проходящим через небольшое отверстие в окне. Два световых конуса, образующихся за непрозрачным экраном, расширяясь благодаря дифракции, частично перекрываются, и в перекрывающейся части, вместо того чтобы давать равномерное увеличение освещенности, образуют серию чередующихся темных и светлых полос. Если одно отверстие закрыто, то полосы исчезают и появляются лишь дифракционные кольца от другого отверстия. Эти полосы исчезают и в том случае, когда оба отверстия освещаются (как это было в опыте Гримальди) непосредственно солнечным светом или искусственным источником света. Привлекая волновую теорию, Юнг очень просто объясняет это явление: темные полосы получаются там, где провалы волн, прошедших через одно отверстие, налагаются на гребни волн, прошедших через другое отверстие, так что их эффекты взаимно компенсируются; светлые каемки получаются там, где два гребня или два провала волн, прошедших через оба отверстия, складываются. Этот опыт позволил Юнгу измерить длину волны для различных цветов: он получил длину волны в 1/36000 дюйма (0,7 микрона) для красного света 1/60000 дюйма (0,42 микрона) для крайнего фиолетового. Это первые в истории физики измерения длины волны света, и, учитывая, что они первые, следует отметить их поразительную точность.

Из своего принципа интерференции Юнг вывел целый ряд разнообразных следствий. Он рассмотрел явления окрашивания тонких слоев и объяснил их вплоть до мельчайших деталей по существу так, как это делается сейчас в курсах физики; он вывел эмпирические законы, найденные Ньютоном, и, считая неизменной частоту света заданного цвета, объяснил уплотнение колец в опыте Ньютона при замене воздушной прослойки между линзами водой (см. гл. 6, § 3) уменьшением скорости света в более преломляющей среде. Тем самым гипотеза Ферма и Гюйгенса получила свое первое экспериментальное подтверждение.

Интересно заметить, что Юнгу принадлежит термин «физическая оптика», применяемый для обозначения исследований

«...источников света, скорости его распространения, его прерывания и затухания, его расщепления на различные цвета, влияния на него различной плотности атмосферы, метеорологических явлений, относящихся к свету, особенных свойств некоторых веществ по отношению к свету» (Thomas Young, A course of lectures in natural philosophy, etc., 2nd ed., London. 1845, p. 340).

Работы Юнга, представляющие собой наиболее существенный вклад в теорию оптических явлений со времен Ньютона, были восприняты физиками того времени с недоверием, а в Англии они подвергались даже грубым насмешкам. Объяснялось это отчасти тем, что Юнг пытался применять принцип интерференции и к явлениям явно не интерференционным, отчасти некоторой неясностью изложения, которая чувствуется и сейчас и которая должна была еще больше чувствоваться в те времена, и отчасти, как упрекал Юнга впоследствии Лаплас, тем, что Юнг иногда удовлетворялся недостаточно строгими, а порой поверхностными математическими доказательствами.

2. ПОЛЯРИЗАЦИЯ СВЕТА

В гл. 6 говорилось об открытом Гюйгенсом явлении, объяснения которого, как он искренне сам заявил, он дать не смог. Луч света, прошедший сквозь кристалл исландского шпата, приобретает какое-то особое свойство, благодаря которому он, попадая на второй кристалл исландского шпата с главным сечением, параллельным первому, уже испытывает не двойное лучепреломление, а обычное. Если же этот второй кристалл шпата повернуть, то вновь возникнет двойное лучепреломление, но интенсивность обоих преломленных лучей будет зависеть от угла поворота.

В первые годы XIX столетия исследованием этого явления занялся французский военный инженер Этьенн Малюс (1775-1812), который в 1808 г. обнаружил, что свет, отраженный от воды под углом 52°45', обладает тем же свойством, что и свет, прошедший через кристалл исландского шпата, причем отражающая поверхность как бы является главным сечением кристалла.

Поляризационный прибор Иоганна Нёренберга (1787-1862). Свет, падающий на стекло g, поляризуется, отражаясь на зеркало m, которое посылает затем свет в анализатор, прикрепленный к кольцу s. Справа показаны различные типы анализаторов
Поляризационный прибор Иоганна Нёренберга (1787-1862). Свет, падающий на стекло g, поляризуется, отражаясь на зеркало m, которое посылает затем свет в анализатор, прикрепленный к кольцу s. Справа показаны различные типы анализаторов

Это явление наблюдалось и при отражении от любого другого вещества, но требуемый угол падения менялся в зависимости от показателя преломления вещества. В случае отражения от металлической поверхности картина получалась более сложной.

В следующей работе, написанной в том же году, Малюс, экспериментируя с полярископом, описываемым до сих пор в учебниках физики под названием «полярископа Био» и состоящим из двух зеркал, расположенных под углом, приходит к формулировке известного закона, носящего его имя.

Как раз в то время, когда Малюс проводил свои исследования, Парижская Академия наук объявила конкурс (1808 г.) на лучшую математическую теорию двойного лучепреломления, подтверждаемую опытом. Малюс принял участие в этом конкурсе и получил премию за свой имеющий историческое значение труд «Theorie de la double refraction de la lumiere dans les substances cristalisees» («Теория двойного лучепреломления света в кристаллических веществах»), опубликованный в 1810 г. В нем Малюс описывает свое открытие и найденный им закон; для его объяснения он принимает точку зрения Ньютона «не в качестве неоспоримой истины», а лишь как гипотезу, позволяющую рассчитать явление. Объявив себя, таким образом, сторонником корпускулярной теории света, Малюс пытается найти объяснение в полярности световых корпускул, о которой бегло упоминает Ньютон в 26 вопросе (см. гл. 6, § 13). В естественном свете, как он теперь называется, корпускулы света ориентированы по всем направлениям, при прохождении же двоякопреломляющего кристалла или при отражении они ориентируются определенным образом. Свет, в котором корпускулы имеют определенную ориентацию, Малюс назвал поляризованным; это слово и его производные остались в физике и до наших дней.

Исследования поляризации света, начатые Малюсом, продолжили во Франции Био и Араго, а в Англии Брюстер, который в свое время был больше известен благодаря изобретенному им калейдоскопу (1817 г.), нежели важным открытиям в области кристаллооптики. В 1811 г. Малюс, Био и Брюстер независимо открыли, что отраженный луч также частично поляризован. В 1815 г. Дэвид Брюстер (1781-1868) дополнил эти исследования открытием закона, носящего его имя: отраженный луч полностью поляризован (а соответствующий преломленный луч имеет максимальную поляризацию), когда отраженный и преломленный лучи перпендикулярны друг другу.

Доминик Франсуа Араго (1786-1853) установил поляризацию света лунного серпа, комет, радуги, еще раз подтвердив тем самым, что все это отраженный солнечный свет. Поляризованным Г является также свет, испускаемый под косыми углами раскаленными жидкими и твердыми телами, что доказывает, что этот свет исходит из внутренних слоев вещества и преломляется, выходя наружу. Но наиболее важным и наиболее известным открытием Араго является обнаруженная им в 1811 г. хроматическая поляризация. Помещая на пути поляризованного луча пластинку из горного хрусталя толщиной 6 мм и наблюдая прошедший сквозь нее луч через кристалл шпата, Араго получил два изображения, окрашенных в дополнительные цвета. Окраска обоих изображений при повороте пластинки не менялась, но менялась при повороте кристалла шпата, причем оба цвета все время оставались дополнительными. Так, если одно из изображений было сначала красным при определенном положении кристалла шпата, то при его повороте оно становилось последовательно оранжевым, желтым, зеленым и т. д. Био повторил этот опыт в 1812 г. и показал, что угол поворота кристалла шпата, необходимый для получения определенного цвета изображения, пропорционален толщине пластинки. Кроме того, в 1815 г. Био обнаружил явление круговой поляризации и наличие правовращающих и левовращающих веществ.

В том же году Био установил, что турмалин обладает двойным лучепреломлением и свойством поглощать обыкновенный луч и пропускать лишь необыкновенный. На этом явлении были основаны сконструированные Гершелем в 1820 г. известные «турмалиновые щипцы» - простейший поляризационный прибор, оставшийся неизменным до наших дней. Наибольшим неудобством этого прибора было окрашивание луча. Этого недостатка лишена призма, предложенная в 1820 г. английским физиком Уильямом Николем (1768-1851). Призма Николя также пропускает только необыкновенный луч. Комбинация двух таких «николей», как теперь называются эти двоякопреломляющие призмы. в один прибор, имеющий и сейчас широчайшее применение, была осуществлена самим Николем в 1839 г.

Таким образом, основные явления поляризации света, представляющие собой обширный и интересный раздел физики, включаемый теперь во все учебники, были открыты французскими физиками за семь лет, с 1808 по 1815 г. И поскольку открытие столь интересных явлений происходило под флагом корпускулярной теории, казалось, что она получает в этих явлениях еще одно подтверждение.

3. ВОЛНОВАЯ ТЕОРИЯ ФРЕНЕЛЯ

Этот прилив жизненных сил в корпускулярную теорию длился недолго. Молодой дорожный инженер Огюстен Френель (1788-1827), присоединившийся волонтером к роялистским войскам, которые должны были преградить дорогу Наполеону во время его возвращения с острова Эльба, в период Ста дней был уволен со службы и вынужден был удалиться в Матье, близ Казна. Молодой инженер, почти не сведущий в оптике, находясь в Казне, посвятил себя исследованию дифракции, имея в своем распоряжении лишь случайное и примитивное экспериментальное оборудование. Два мемуара, представленных им 15 октября 1815 г. Парижской Академии наук, были первым результатом этих трудов. Араго, которому вместе с Пуансо поручили рассмотреть их и прореферировать, нашел их настолько интересными, что добился для Френеля, который с наступлением реставрации был вновь принят на службу, приглашения в Париж для повторения своих опытов в более благоприятных условиях.

Огюстен Френель
Огюстен Френель

Френель начал исследовать тени, отбрасываемые небольшими препятствиями на пути лучей, и обнаружил образование полос не только снаружи, но и внутри тени, что до него уже наблюдал Гримальди и о чем умолчал Ньютон. Исследование тенрт, образуемой тонкой проволокой, привело Френеля ко вторичному открытию принципа интерференции. Его поразило, что, если край экрана был расположен вдоль одной стороны проволоки, внутренние полосы исчезали. Итак, подумал он сразу, раз прерывание света от одного из краев проволоки приводит к исчезновению внутренних полос, значит, для их образования необходимо совместное действие лучей, приходящих с обеих сторон проволоки.

«Внутренние каемки не могут образовываться от простого смешения этих лучей, потому что каждая сторона проволоки в отдельности направляет в тень только непрерывный поток света; следовательно, каемки образуются в результате перекрещивания этих лучей. Этот вывод, который представляет собой, так сказать, перевод явления на понятный язык, полностью противоречит гипотезе Ньютона и подтверждает теорию колебаний. Легко можно догадаться, что колебания двух лучей, которые скрещиваются под очень малым углом, могут действовать в противоположные стороны в тех случаях, когда узлы одних волн соответствуют пучностям других» (Oeuvres completes d'Augustin Fresnel, I, Paris, 1866, p. 17. (Переводы работ Френеля по оптике на русский язык вошли в книгу: О. Френель, Избранные труды по оптике,. М., 1955.- Прим. перев.)).

Идея Френеля ясна из этой цитаты, хотя ее формулировка недостаточно точна и была впоследствии исправлена самим Френелем: колебания ослабляются, когда «узлы разрежения» одной системы лучей совпадают с «узлами уплотнения» другой системы, и усиливаются, когда оба движения находятся «в гармонии». В общем, приняв принцип интерференции, Френель повторяет путь Юнга. В частности, он дает объяснение окрашиванию тонких слоев.

В Париже Френель узнал об опытах Юнга с двумя отверстиями, которые, по его мнению, были вполне подходящими для иллюстрации волновой природы света. Тем не менее для исключения всякой возможности истолкования этого явления как действия краев отверстий Френель придумал известный «опыт с двумя зеркалами», о котором он сообщает в 1816 г., а затем в 1819 г. «опыт с бипризмой», ставший с тех пор классическим методом демонстрации принципа интерференции.

В 1837 г. Хэмфри Ллойд показал, что оптическая интерференция может быть получена и с помощью одного зеркала, если заставить интерферировать прямой свет и отраженный от зеркала. Однако существенный прогресс был достигнут лишь в 1856 г., когда Жюль Жамен (1818-1886), развивая исследования Брюстера 1831 г., построил свой известный «интерференционный рефрактометр», образуемый двумя параллельными стеклянными пластинками, которые в 1867 г. Квинке предложил серебрить с внешней стороны. Как известно, в этом приборе интерференция происходит за счет разности оптических путей.

Добавим здесь, кстати, что именно опыт с двумя зеркалами подсказал в 1833 г. Джону Гершелю (1792-1871) идею аналогичной установки для исследования интерференции акустических волн, в которой использовалась двойная трубка; эта установка была усовершенствована в 1866 г. Георгом Квинке (1834-1924), в честь которого она получила название, дошедшее до настоящего времени. Применение манометрического пламени для объективных наблюдений было предложено в 1864 г. Карлом Рудольфом Кенигом (1832-1901), заменившим резиновые трубки Квинке металлическими трубками, которые могли удлиняться, как в тромбоне.

Вернемся к работам Френеля. Взяв на вооружение принцип интерференции, волновая теория располагала теперь тремя принципами: принципом элементарных волн, принципом огртбающей и принципом интерференции. Это были три отдельных принципа, которые Френель гениально решил слить воедино. Таким образом, для Френеля огибающая волн не просто геометрическое понятие, как для Гюйгенса. В произвольной точке волны полный эффект представляет собой алгебраическую сумму импульсов, создаваемых каждой элементарной волной; полная сумма всех этих импульсов, складывающихся согласно принципу интерференции, может быть, в частности, равна нулю. Френель произвел такой расчет, хотя и не вполне строгим способом, и пришел к выводу, что влияние сферической волны во внешней точке сводится к влиянию небольшого сегмента волны, центр которой находится на линии, соединяющей источник света с освещенной точкой; остальная часть волны дает в сумме нулевой эффект в рассматриваемой точке.

Тем самым было преодолено препятствие, стоявшее в течение веков на лути утверждения волновой теории - согласование прямолинейного распространения света с его волновым механизмом. Каждая точка вне волны получает свет лишь от очень небольшой ее области, прилегающей к точке, ближайшей к рассматриваемой; все происходит так, как если бы свет распространялся по прямой линии от источника к освещенной точке. Действительно, волны должны огибать препятствия, но это утверждение не следует понимать грубо качественно, поскольку отклонение волны за препятствием зависит от длины волны. Зная длину волны, можно рассчитать, как и насколько отклонится свет за препятствием. Рассматривая явление дифракции, Френель произвел такой расчет, и его результаты прекрасно совпали с экспериментальными данными. Первые статьи Френеля о дифракции вследствие их недостаточной математической строгости были неодобрительно встречены Лапласом, Пуассоном и Био, утонченными аналитиками, для которых математическая строгость была культом.

После нескольких лет перерыва в исследованиях Френель вновь излагает свою теорию в обширном мемуаре о дифракции, представленном в 1818 г. на конкурс Парижской Академии наук. Этот мемуар рассматривался комиссией, состоявшей из Лапласа, Био, Пуассона, Араго и Гей-Люссака. Трое первых были убежденные ныотонианцы, Араго был настроен в пользу Френеля, а Гей-Люссак, по существу, не был компетентен в рассматриваемом вопросе, но был известен своей честностью. Пуассон заметил, что из теории Френеля можно вывести следствия, находящиеся как будто в явном противоречии со здравым смыслом, поскольку из расчета следует, что в центре геометрической тени непрозрачного диска надлежащих размеров должно наблюдаться светлое пятно, а в центре конической проекции небольшого круглого отверстия на определенном легко вычисляемом расстоянии должно наблюдаться темное пятно. Комиссия предложила Френелю доказать экспериментально выводы из его теории, и Френель блестяще это выполнил, доказав, что «здравый смысл» в этом случае ошибается. После этого по единодушному предложению комиссии Академия наук присудила ему премию, а в 1823 г. он был избран ее членом.

После установления теории дифракции Френель перешел к исследованию явления поляризации. Корпускулярная теория, вынужденная для интерпретации многочисленных явлений, открытых в первое пятнадцатилетие XIX века, вводить одну за другой различные гипотезы, совершенно необоснованные и порой противоречивые, к этому времени невообразимо усложнилась. В своем опыте с двумя зеркалами, расположенными под углом, Френель получил с помощью одного источника света два мнимых источника, всегда строго когерентных. Он попытался также видоизменить этот прибор, используя два луча, получающихся при двойном лучепреломлении одного луча, и компенсируя надлежащим образом разность оптических путей обоих лучей. Однако ему никак не удавалось добиться интерференции этих поляризованных лучей.

В сотрудничестве с Араго он продолжал экспериментально исследовать возможность интерференции поляризованного света, и им удалось установить, что два луча света, поляризованные в параллельных плоскостях, всегда интерферируют, а два луча света, поляризованные перпендикулярно, никогда не^интерферируют (в том смысле, что не гасят друг друга). Как объяснить этот факт? Как объяснить все остальные явления поляризации, не имеющие никакой аналогии в акустике?

Тот факт, что луч, поляризованный при отражении, обладает двумя плоскостями симметрии, ортогональными друг другу и проходящими через луч, мог натолкнуть на мысль о том, что колебания эфира происходят в этих плоскостях перпендикулярно направлению луча. Эта идея была высказана Френелю Ампером еще в 1815 г., но Френель не воспользовался ею. Юнгу, едва лишь он узнал об опытах Френеля и Араго с поляризованным светом, тоже пришла мысль о поперечных колебаниях, однако то ли из-за неуверенности, то ли из благоразумия он говорил об этом как о «воображаемом поперечном движении», т. е. как о понятии чисто фантастическом,- столь бессмысленными с механической точки зрения представлялись ученым того времени поперечные колебания эфира.

После того как в течение многих лет Френель пользовался языком теории продольных колебаний, в 1821 г. он, не найдя другого пути интерпретации поляризационных явлений, решился принять теорию поперечности колебаний. В том же году он пишет:

«Лишь несколько месяцев тому назад, размышляя с большим вниманием по этому поводу, я признал весьма вероятным, что колебательные движения световых волн осуществляются только в плоскости волн как для простого, так и для поляризованного света... Я постараюсь показать, что гипотеза, которую я представляю, не содержит ничего физически невозможного и что она уже может, служить для объяснения основных свойств поляризованного-света...» (Там же, р. 630)

То, что эта гипотеза может объяснить основные свойства поляризованного света, было детально показано Френелем; что же касается того, что в этой гипотезе нет ничего физически невозможного, - это уже совсем другое дело. Из поперечности колебаний следовало, что эфир, будучи тончайшим и невесомым флюидом, должен одновременно быть наитвердейшим телом, тверже стали, ибо только твердые тела передают поперечные колебания. Эта гипотеза представлялась исключительно смелой, почти безумной. Араго, физик явно не склонный к предрассудкам, тот самый Араго, который был другом, советчиком и защитником Френеля во всех случаях, не нашел возможным разделить ответственность за эту странную гипотезу и отказался подписать представленную Френелем статью.

Таким образом, с 1821 г. Френель продолжал свой путь в одиночку, и это был путь, полный побед. Гипотеза о поперечности колебаний позволила ему построить свою механическую модель света. Основой ее является эфир, заполняющий всю Вселенную и пронизывающий все тела, причем эти тела вызывают изменение механических характеристик эфира. Из-за этих изменений, когда упругая волна переходит из свободного эфира в эфир, содержащийся в веществе, на поверхности раздела часть волны поворачивает обратно, а часть проникает в вещество. Тем самым было дано механическое объяснение явления частичного отражения, остававшегося в течение нескольких веков тайной для физиков. Выведенные Френелем формулы, носящие теперь его имя, сохранили свой вид до наших дней. Скорость распространения колебаний в среде зависит от длины волны, а при заданной длине волны тем меньше, чем более преломляющей является среда. Отсюда вытекают как следствие преломление света и его дисперсия. В изотропных средах волны имеют сферическую форму с центром в точечном источнике излучения; в анизотропных средах форма волны описывается, вообще говоря, поверхностью четвертого порядка. В теории Френеля все сложнейшие явления поляризации интерпретируются в удивительном согласии с экспериментальными данными и предстают как частные случаи общего закона сложения и разложения скоростей.

Исследование двойного лучепреломления повлекло за собой анализ сил, возникающих в упругой среде благодаря малым молекулярным перемещениям. В результате этого исследования Френель сформулировал ряд теорем, которые, как заметил Эмиль Верде (1824-1866), редактор трудов Френеля, легли в основу новой отрасли науки - общей теории упругости, развитой вскоре после появления трудов Френеля работами Когаи, Грина, Пуассона и Ламе.

В период с 1815 по 1823 г. благодаря Френелю было воздвигнуто величественное здание волновой оптики, которое, как, впрочем, все творения человека, не было свободно от недостатков. Молодой инженер подходил к различным проблемам и разрешал их, полагаясь больше на свою могучую интуицию, нежели на математический расчет. Поэтому иной раз он допускал ошибки, а чаще всего лишь давал схему решения. Но все же его идеи, несмотря на противодействие старых физиков, очень быстро увлекли молодежь, восхищенную наглядностью и простотой теоретической модели. Джордж Эйри (1801-1892), Джон Гершель (1792-1871), Франц Нейман (1798-1895) и многие другие физики упорядочили и скорректировали теорию Френеля и вывели из нее ряд следствий.

С 1823 г. Френель, уже больной, начинает по долгу службы заниматься исследованием маяков (университетской кафедры ему не удалось получить). Эти исследования, которые он проводил до самой смерти, наступившей в 1827 г., привели его к изобретению ступенчатых линз и существенному усовершенствованию мигающих маяков.

4. ОПТИКА ГАМИЛЬТОНА - ЯКОБИ

Когда в 1830 г. ирландец Уильям Роуан Гамильтон (1805-1865) начал заниматься оптикой, волновая теория света еще не была общепринятой. Пуассон был еще последователем корпускулярной теории. Био, самый консервативный из великих физиков XIX века, остался верен ей до самой смерти, последовавшей в 1862 г. Брюстер волновой теории не принимал, поскольку считал невозможным приписывать творцу «столь грубую идею, как заполнение всего пространства эфиром для, того, чтобы создать свет». Трудно поверить, но и Араго, согласно свидетельству Верде, заявил в 1851 г., что не может более следовать идеям Френеля с тех пор, как тот стал говорить о поперечных колебаниях эфира.

В этих условиях Гамильтон задался целью создать формальную теорию известных оптических явлений, которая была бы приемлема как с точки зрения волновой интерпретации, так и с точки зрения корпускулярной, и была бы построена по образцу принципа наименьшего действия (см. гл. 7, § 3). Гамильтон заявил, что ставит перед собой цель - создать формальную теорию оптических явлений, которая обладала бы такой же «красотой, эффективностью и гармонией», как аналитическая механика Лагранжа. Согласно Гамильтону, мы можем рассматривать законы распространения световых лучей сами по себе, независимо от объясняющих их теорий и прийти таким образом к «математической оптике». Более того, идя по этому пути, Гамильтон вывел отсюда целую научно-философскую доктрину. В эволюции каждой науки Гамильтон различает две стадии: в первой ученый восходит от отдельных фактов к законам, пользуясь индукцией и анализом, во второй он от законов нисходит к следствиям, пользуясь дедукцией и синтезом. Иными словами, человек собирает и группирует отдельные явления до тех пор, пока научное воображение не даст ему возможность вскрыть внутренние законы, позволяющие возвыситься до понимания единства всего разнообразия. После этого из единства человек вновь получает разнообразие, проникая с помощью открытых законов в будущее.

В этом состоит метод Гамильтона. Он замечает, что принцип наименьшего действия, хотя и выведен из метафизических соображений о наличии экономии в природе, следует рассматривать (по крайней мере в известных случаях) как принцип экстремального действия, и поэтому он говорит о стационарном или варьируемом действии. Таким образом, Гамильтон пришел к формулировке носящего его имя принципа, согласно которому некоторая физическая величина, точно определенная математически, стационарна при распространении света. Этим путем ему удается рационализировать геометрическую оптику, превратив ее в формальную теорию, позволяющую интерпретировать опытные данные без необходимости выбора между корпускулярной и волновой гипотезами.

В 1834-1835 гг. Гамильтон обобщил свою теорию оптических явлений на динамику и систематически развил ее, сведя решение общей задачи динамики к системе двух уравнений в частных производных.

В этих работах Гамильтона достигнут чудесный синтез проблем оптики и механики, который был впоследствии вновь найден Луи де Бройлем и который непосредственно вдохновил Шредингера в его исследованиях (см. гл. 15). Интересно заметить, что наиболее мощные математические средства квантовой механики были заимствованы именно из аналитической механики, сложившейся в рамках классической физики.

Созданная теория позволила Гамильтону предсказать, что если на плоскопараллельную пластину, вырезанную в двуосном кристалле перпендикулярно оптической оси, направить пучок естественного света так, чтобы он преломился в кристалле параллельно оптической оси, то на выходе из пластины образуется светящееся кольцо, диаметр которого меняется с изменением толщины пластины. Как известно, - это явление внутренней конической рефракции, которое было подтверждено экспериментально Хемфри Ллойдом (1800-1881) в опытах с арагонитом.

Однако наиболее общее применение теории Гамильтона было дано Карлом Густавом Якоби (1801-1854) в его знаменитых работах, начатых в 1842 г. Одновременно Якоби упростил и обобщил теорию Гамильтона, придав ей современную форму, ставшую классической. Вот почему эту теорию часто называют теорией Гамильтона - Якоби.

5. СКОРОСТЬ СВЕТА

Как мы уже упоминали не раз, корпускулярная теория приписывает свету большую скорость в более плотных средах, тогда как волновая теория приписывает ему в этом случае меньшую скорость. Араго, противник корпускулярной теории и не совсем последовательный приверженец волновой, полагал, что измерение скорости света в материальных средах было бы лучшим способом, experimentum crucis, установить, которая же из этих теорий справедлива. И вот в 1838 г. он предлагает соответствующий опыт, выполнение которого, однако, из-за слабости зрения он был вынужден предоставить другим. Таким образом, Араго особенно подчеркнул решающую роль этого опыта для окончательного подтверждения волновой теории, так что задача измерения скорости света наземных источников приобрела особую необходимость и важность в глазах молодых физиков.

Первым удалось справиться с ней в 1849 г. Арману Ипполиту Физо {1819-1896). В принципиальном отношении опыт Физо был подобен опыту Галилея (см. гл. 4, § 12). Физо смонтировал установку, в которой луч света проходил в щели между соседними зубцами ко леса, вращающегося с большой скоростью, и попадал по нормали на плоское зеркало, находящееся на расстоянии 8633 м. Отраженный луч шел обратно по направлению падающего луча. Если зубчатка была неподвижна, то отраженный луч проходил обратно через ту же щель, через которую он прошел в прямом направлении, и наблюдателю зеркало представлялось освещенным. Если же зубчатка достаточно быстро вращалась, то за время, необходимое свету для прохождения от зубчатки до зеркала и обратно, на место щели перемещался зубец, преграждавший путь отраженному лучу, так что поле зрения казалось наблюдателю темным. Если скорость вращения зубчатки еще больше возрастала, так что отраженный луч попадал уже в следующую щель, то поле зрения вновь становилось светлым. Физо получил для скорости света значение 313 274 304 м/сек.

Эти опыты были повторены Альфредом Корню (1841-1902), который в качестве среднего из 1000 опытов дал в 1873 г. значение 298 400 км/сек с возможной ошибкой в 1/300. В усовершенствованном виде этот метод был применен в 1882 г. Джемсом Юнгом (1811-1883) и Джорджем Форбсом, а в 1928 г. А. Каролюсом и О. Миттелыптедтом, заменившими вращающуюся зубчатку ячейкой Керра, значительно более точным электрооптическим прибором, позволившим уменьшить расстояние до зеркала до нескольких метров. В таком виде опыты были снова повторены А. Хуттелем в 1940 г. и У. Андерсоном в 1941 г.

Однако прибор Физо не позволял измерять скорость света в различных средах. В 1834 г. для измерения длительности электрической искры Уитстон ввел вращающееся зеркало и сразу же стал думать о возможности его применения для измерения скорости света. Однако здесь ему не удалось добиться успеха. Его проект был подхвачен Араго, предложившим очень сложный опыт, о котором мы упоминали в начале параграфа. Физо и Леон Фуко (1810-1868) взялись упростить его и практически осуществить. Сначала они работали вместе, но потом разделились, вступив в соревнование, кто быстрее достигнет цели. Это удалось сделать в 1850 г. Фуко, применившему приспособление, описываемое во всех учебниках физики.

Суть опыта заключается в следующем. Время, необходимое для прямого и обратного прохождения светом расстояния между двумя зеркалами, одно из которых быстро вращается, определялось по углу поворота зеркала за это время, который оценивался по отклонению светового луча после его отражения от вращающегося зеркала. Для определения числа оборотов вращающегося зеркала в секунду Фуко применил (по-видимому, впервые в физических исследованиях) стробоскопический метод, т. е. метод кажущегося замедления периодического движения, позволяющий удобно проводить наблюдение. Помещая между обоими зеркалами, находящимися одно от другого на расстоянии нескольких метров, различные вещества, отличные от воздуха, можно было определить скорость света в них.

Опыты, проведенные Фуко в 1850 г., позволяли лишь сравнивать значения скоростей света. Поместив трубу с водой между двумя зеркалами, он показал, что скорость света в воде составляет 3/4 скорости света в воздухе. К тому же результату пришел несколько позже Физо, поставивший опыт совместно с Луи Бреге (1804-1883). В 1862 г. Фуко, отвлекшись от других исследований (см. гл. 12), вновь предпринял измерение скорости света и нашел ее равной 298 000 км/сек с максимальной ошибкой +500 км/сек.

Измерения скорости света повторялись с последующими улучшениями методики Фуко Симоном Ньюкомбом (1835-1909) в 1881-1882 гг., Альбертом Майкельсоном в период 1878-1882 гг. и еще раз в 1924-1926 гг. и У. Андерсоном в 1937 г. Измерения Андерсона дают для скорости света значение 299 764 км/час с возможной ошибкой 15 км/сек. Все приведенные значения относятся к распространению света в пустоте.

Наземные измерения систематически дают для скорости света значение больше полученного с помощью астрономических методов (см. гл. 5); причина этого неизвестна.

Все эти измерения согласуются также в том, что в более преломляющих средах скорость света оказывается меньшей. Но эти измерения вскрыли еще одну важную особенность: показатель преломления среды не равен точно отношению скоростей света в пустоте и в рассматриваемой среде, как того требует теория Френеля, причем наблюдаемое отклонение намного превышает величину ошибки эксперимента. Это расхождение в 1881 г. объяснил Рэлей, который ввел понятия «фазовой скорости», т. е. (не наблюдаемой указанными методами) скорости строго монохроматической волны, и «групповой скорости» - скорости гребня волны, получающегося в результате наложения большого числа монохроматических волн. В диспергирующей среде групповая скорость, которая как раз и измеряется в описанных опытах, не совпадает с фазовой.

В 1850 г. опыты Физо и Фуко представлялись решающим триумфом волновой теории. Карло Маттеуччи, один из крупнейших итальянских физиков того времени, в том же году писал:

«Прямое экспериментальное доказательство уменьшения скорости света в более плотных средах, о котором мы только что говорили, полностью отвергает ньютоновскую гипотезу и великолепно подтверждает справедливость волновой» (Carlo Matteucci, Lezioni di fisica, 4 ediz , Pisa, 1850, p. 549).

Однако физические теории никогда не бывают окончательными. Теория Френеля спокойно просуществовала еще около двадцати лет, после чего начались всякие неприятности.

6. НЕПОДВИЖЕН ЛИ ЭФИР ИЛИ ЖЕ ОН УВЛЕКАЕТСЯ ПРИ ДВИЖЕНИИ ТЕЛ?

Гипотеза упругих колебаний эфира сразу ставила проблему: неподвижен эфир или же движется? В частности, движется ли эфир, сконцентрированный в теле, вместе с этим телом? Прекрасные опыты Араго доказали, что движение Земли не оказывает никакого ощутимого воздействия на преломление света, приходящего от звезд.

Этот результат был несовместим с корпускулярной теорией, поэтому Араго обратился к Френелю с вопросом, укладывается ли он в рамки волновой теории. В одном из своих писем 1817 г. Френель ответил, что этот результат легко объясняется волновой теорией, как и явление аберрации, если только принять частичное увлечение эфира, т. е. принять, что движущееся тело увлекает с собой не весь содержащийся в нем эфир, а лишь избыточную часть эфира по сравнению с равным объемом пустого пространства. С помощью этой гипотезы Френелю удалось объяснить все явления, проистекающие из-за быстрого движения преломляющего тела.

А. Майкельсон
А. Майкельсон

Влияние движения тел, испускающих свет или звук, было исследовано теоретически в 1842 г. австрийским физиком Христианом Допплером (1803-1853), который показал, что при приближении источника света к наблюдателю период колебаний представляется наблюдателю меньшим, чем при неподвижном источнике, т. е. цвет излучения смещается в сторону ультрафиолета. Если же источник удаляется от наблюдателя, то цвет смещается в красную сторону спектра. Аналогично если источник звука приближается к наблюдателю, то звук воспринимается более высоким, а если удаляется - более низким; в этом явлении теперь легко убедиться, наблюдая изменение высоты звука гудка паровоза, проходящего мимо наблюдателя. В 1848 г. Физо предложил воспользоваться этим явлением, получившим название эффекта Допплера, или эффекта Допплера - Физо, для измерения радиальной составляющей скорости звезд по смещению их спектральных линий.

Уже сам Допплер заметил, что этот же метод можно применить для измерения скоростей двойных звезд; однако это измерение никому не удавалось провести, в том числе и Максвеллу. Применение допплеровского метода в астрофизике стало возможным лишь после появления в 1860 г. призмы прямого зрения, которую предложил астроном Джован Баттиста Амичи (1786-1863), известный конструктор оптических инструментов большой точности. Помимо этой призмы, как известно из учебников физики, он ввел в употребление еще другую призму (полного внутреннего отражения), названную в его честь, усовершенствовал микроскоп и предложил идею иммерсионного микроскопа. Призма прямого зрения Амичи состоит из призмы из флинтгласа, расположенной между двумя призмами из кронгласа; она дает спектр в направлении падающего луча.

В 1869 г. Фридриху Цолльнеру (1834-1882) пришла в голову счастливая идея применить пару противоположно расположенных призм прямого зрения Амичи, чтобы получить два противоположных спектра. Таким образом был создан так называемый реверсионный спектроскоп, который позволял уже использовать эффект Допплера. С этого момента значение эффекта Допплера в астрофизике чрезвычайно возросло.

Эффект Допплера тоже как будто подтверждал идею Френеля о частичном увлечении эфира; тем не менее эту гипотезу оспаривал Джордж Габриэль Стоке (1819-1903), один из наиболее блестящих продолжателей дела Френеля, известный прежде всего открытием в 1852 г. явления флюоресценции и закона, определяющего флюоресценцию, который и сейчас называется «законом Стокса». В известной работе, относящейся к 1845 г., Стоке отстаивает идею о полном увлечении эфира, находящегося в непосредственной близости от Земли, которое переходит постепенно в частичное увлечение, все более уменьшающееся по мере удаления от Земли.

В 1851 г. Физо пытался решить этот вопрос, заставив интерферировать два луча света, один из которых проходил столб воды в направлении ее течения, а второй - против течения. Если эфир увлекается при движении воды, то интерференционные полосы должны сместиться по отношению к тому положению, которое они занимают в опыте с неподвижной водой. Экспериментальные результаты, полученные Физо, подтвердили гипотезу Френеля. К тому же выводу привели исследования Эдуарда Кеттелера (1836-1900), проведенные в 1871 г., и исследования Майкельсона и Морли в 1886 г.

Но еще пятью годами раньше Майкельсон в своем ставшем впоследствии знаменитом опыте пытался экспериментально обнаружить движение Земли относительно эфира, принимаемого за неподвижный, т. е. обнаружить так называемый «эфирный ветер».

Примененный Майкельсоном метод можно назвать «методом двух путей»: один луч света, падая на слегка посеребренную пластину, расщеплялся на два взаимно перпендикулярных луча; эти лучи отражались по нормали от двух зеркал, расположенных на одинаковом расстоянии от пластины, возвращались обратно по тому же пути, сливались вместе и направлялись в оптическую систему. Если Земля движется относительно эфира, то из-за различия времен, требуемых для прохождения обоими лучами своих взаимно перпендикулярных путей, должна наблюдаться интерференционная картина. Хотя линейная скорость обращения Земли вокруг Солнца (30 км/сек) довольно мала по сравнению со скоростью света, экспериментальная установка была способна обнаружить даже в 100 раз меньший эффект. Этот опыт, многократно повторенный для различной ориентации прибора и в разное время года, давал у Майкельсона все время чисто отрицательный результат. Критика этого опыта со стороны Лоренца привела к тому, что Майкельсон вновь повторил его в 1887 г. вместе с Эдуардом Уильямом Морли (1838-1923) - и с тем же результатом. Таким образом, Майкельсон мог утверждать, что, согласно его опытам, эфир движется вместе с Землей. Однако явление аберрации света указывает на то, что эфир неподвижен. Эти два вывода резко противоположны один другому. В гл. 12 мы увидим, как это противоречие привело к появлению теории относительности.

Опыты Майкельсона были повторены с некоторыми усовершенствованиями Морли и Миллером в 1904 г. с тем же результатом. Позже, с 1921 по 1925 г., Миллер производил непрерывные наблюдения, которые привели его к выводу, что Земля движется по отношению к эфиру со скоростью 9 км/час. Однако этот вывод был опровергнут последующими опытами Джозефа Кеннеди и многими другими, вплоть до нового опыта Майкельсона, проведенного совместно с Пизом и Пирсоном в 1929 г.

7. НЕВИДИМЫЕ ИЗЛУЧЕНИЯ

В первое тридцатилетие XIX века исследования поляризации и природы света оттеснили на второй план другие важные открытия в области световых явлений.

Тот факт, что световые лучи связаны с тепловыми лучами, ясный из непосредственного наблюдения, был известен, конечно, еще со времен античности. Само применение слова «фокус» к вогнутым зеркалам и к линзам показывает, что здесь внимание обращалось больше на концентрацию тепловых лучей, а не световых (Focus на латинском языке или fuoco на итальянском означают огонь, костер, очаг. - Прим перев). Но различение световых и тепловых лучей мы встречаем впервые, по-видимому, в «Magia naturalis» («Натуральная магия») Порты (1589 г.), где выражается удивление, почему вогнутое зеркало концентрирует не только тепло, но и холод. Это наблюдение было предметом тщательного экспериментального исследования Академии опытов, причем было замечено ощутимое охлаждение в фокусе вогнутого зеркала, перед которым помещен большой кусок льда. А Паоло дель Буоно (1625-1659), корреспондент этой же Академии, заметил, что лучи, проходящие через линзу из льда, фактически не теряют своей тепловой способности. Еще более ясно различие между световыми и тепловыми лучами выявил Мариотт, который с помощью вогнутого зеркала из льда показал, что тепловые лучи отражаются от него без ослабления, так что в фокусе удается создать интенсивность, достаточную для того, чтобы воспламенить порох. В 1777 г. Ламберт показал, что тепловые лучи, как и световые, распространяются прямолинейно.

В 1800 г. Вильгельм Гершель произвел фундаментальное открытие. Желая проверить, действительно ли тепло, как принято было считать, распределено равномерно по солнечному спектру, Гершель перемещал чувствительный термометр вдоль солнечного спектра и обнаружил, что показываемая им температура не только непрерывно повышалась при перемещении от ультрафиолетового конца спектра к красному, но ее максимум вообще достигался в области, лежащей за красной частью спектра, т. е. там, где глаз ничего не различает. Вот пример того, насколько «в естествознании полезно сомневаться в общепринятых вещах», - замечает по этому поводу Гершель. Он тут же объясняет это явление невидимым тепловым излучением, исходящим из Солнца и отклоняемым призмой слабее красного цвета, почему оно и получило название «инфракрасного излучения». Затем Гершель исследовал это невидимое излучение, испускаемое земным источником, представлявшим собой железный цилиндр, нагретый, но не светящийся, и показал преломление этого излучения в линзах.

Мачедонио Меллони
Мачедонио Меллони

Юнг понимал важность открытия Гершеля и в своих лекциях в 1807 г. назвал его самым крупным открытием со времен Ньютона. Правда, Джон Лесли (1766-1832), весьма аккуратный экспериментатор, пытался объяснить опыты Гершеля воздушными течениями, однако его теоретические возражения не нашли сторонников. Более удачными были его экспериментальные исследования (1804 г.), и сейчас еще приводимые в курсах физики. С помощью дифференциального термометра, носящего его имя, но описанного еще в 1685 г. Иоганном Христофором Штурмом (1635-1703), и с помощью своего «куба», одни грани которого были зачерненными, а другие зеркальными, Лесли показал, что испускание и поглощение телом теплового излучения зависят от характера его поверхности.

За несколько лет до работ Лесли немецкий физик Иоганн Риттер (1776 - 1810) сделал другое открытие, «симметричное» открытию Гершеля и столь же важное. Повторив в 1802 г. опыты Гершеля, он задался целью исследовать химическое действие различных участков светового спектра. Для этого он применял хлористое серебро, почернение которого под действием световых лучей было обнаружено Иоганном Генрихом Шульце (1687-1744) еще в 1727 г., и установил, что химическое действие излучения возрастает постепенно по спектру от красного конца к фиолетовому и достигает максимума за фиолетовой областью, там, где глаз уже не воспринимает никакого света. Таким образом было найдено в спектре новое излучение, присутствующее в солнечном свете и преломляемое призмой сильнее, чем фиолетовое, в связи с чем оно и получило название «ультрафиолетового излучения». Томас Юнг с большей точностью повторил опыты Риттера и произвел также измерения интенсивности, а Уильям Волластон (1766-1828) подтвердил полученные Юнгом результаты в опытах с раствором гуммигута, который под действием света меняет свой цвет с желтого на зеленый.

За этим последовали работы многих других физиков, в том числе де Сос-сюра и Пикте, Гей-Люссака и Тенара, Зеебека и Берара, каждый из которых внес свой вклад в исследование этого явления. Эти исследования привели также к одному важному применению - фотографии, играющей столь большую роль и для самой физики. Мы не можем здесь, однако, останавливаться на истории фотографии. Достаточно лишь упомянуть, что в 1839 г. Луи Дагерр (1789-1851) сообщил об изобретенном им процессе, названном «дагерротипией», являющемся усовершенствованием метода получения фотографических изображений на металле, предложенного в 1827 г. Жозе-фом Ньепсом (1765-1833), сотрудником которого был Дагерр. В 1840 г. Дрейпер сфотографировал Луну, а в 1842 г. - линии Фраунгофера; в том же году Алессандро Майокки (1795-1854) сфотографировал Солнце.

'Скамья' Меллони. Слева - термоэлектрический столб Нобили, далее расположены экраны, линзы, призмы, источник тепла, укрепленные на металлических стержнях, которые могут перемещаться вдоль линейки (Парма, Институт физики им. Меллони)
'Скамья' Меллони. Слева - термоэлектрический столб Нобили, далее расположены экраны, линзы, призмы, источник тепла, укрепленные на металлических стержнях, которые могут перемещаться вдоль линейки (Парма, Институт физики им. Меллони)

Фундаментальный вклад в эти исследования внес Мачедонио Меллони (1798-1854). Меллони, один из крупнейших итальянских экспериментаторов, занялся исследованием «лучистого тепла» с помощью инструмента, значительно более чувствительного, чем бывшие тогда в употреблении обычные термометры. Он применял «термо-мультипликаторы», состоящие из термоэлектрического столбика (см. гл. 10), связанного с гальванометром Нобили, чувствительным элементом экспериментального приспособления, известного сейчас как оптическая скамья Меллони. При поддержке Араго Меллони провел свои главные опыты в Париже, где вынужден был искать политического убежища с 1831 по 1839 г., ибо оказывал помощь парижским студентам, принявшим участие в революции 1830 г.

После анализа результатов, полученных в области исследования лучистого тепла предшествующими физиками, и исправления некоторых из них Меллони начинает самостоятельные исследования с изучения поглощения лучистого тепла различными телами и обнаруживает, что каменная соль весьма прозрачна для тепла, так что особенно подходит для изготовления призм и линз,

предназначенных для исследования инфракрасного излучения. Меллони показал различную преломляемость тепловых лучей, которая до того отрицалась, и «химических», т. е. ультрафиолетовых лучей; он доказал, что лучистое тепло поляризовано, и с помощью остроумного опыта, приписываемого теперь Тиндалю, показал, что интенсивность лучистого тепла убывает обратно пропорционально квадрату расстояния.

Еще в 1833 г. Карло Маттеуччи показал, что тепловые лучи интерферируют между собой, а вслед за ним Форбс (1809-1868) подтвердил интерференцию тепловых лучей на приборе с двумя зеркалами Френеля. Большое значение имеет работа Меллони, вышедшая в Неаполе в 1842 г., куда он был приглашен в Школу искусств и ремесел (должность эту он. был вынужден оставить в 1848 г. тоже по политическим соображениям) .

В этой небольшой работе (всего 47 страниц) он разъясняет понятия лучистого тепла, света и химических лучей (ультрафиолета) как сходных явлении излучения, различающихся лишь длиной волны. Это было одним из крупнейших достижений науки того времени и существенным стимулом к выработке единых теорий, характерных для прогресса физики в XIX веке. В своей новой работе, вышедшей годом позже, Меллони показал, что поглощение инфракрасного излучения происходит так же, как и поглощение видимого излучения, и подобно тому как при определенной толщине тела бывают прозрачны или непрозрачны для света, так и для тепла они бывают «теплопрозрачны» и «теплонепроницаемы». Как и свет, тепло может испытывать избирательное поглощение в телах, так что оптически прозрачное тело не всегда «теплопрозрачно», как, например, стекло, которое слабо поглощает свет и сильно поглощает тепло. Все эти явления, а также различная преломляемость тепловых лучей позволили Меллони говорить в фигуральном смысле о «тепловых цветах». В 1845 г. Меллони показал, что тепловое излучение - это не чисто поверхностное явление, в нем участвуют и внутренние слои излучающего тела.

В своей работе «La thermocrose ou la coloration calorique» («0 тепловых цветах»), опубликованной в Неаполе в 1850 г. (и переизданной в 1954 г. в Болонье в его собрании сочинений), Меллони дает захватывающее по форме цельное изложение своей теории лучистого тепла и своих классических экспериментов. После введения, носящего автобиографический характер, Меллони описывает сначала приборы для измерения лучистого тепла и источники теплового излучения, потом переходит к экспериментальным исследованиям теплового излучения в пустоте и в воздухе, а затем - к распространению лучистого тепла в различных веществах.

В этой классической работе было положено начало исследованию излучательной и поглощающей способности различных тел (и в частности, сажи, что привело к понятию черного тела) и показано, что законы, которым подчиняются классические явления оптики, совпадают с законами, определяющими аналогичные явления в области теплового излучения. Исследования Меллони были продолжены Джоном Тиндалем (1820-1893), в частности в области поглощения в газах. Тиндаль показал, что сухой воздух плохо поглощает тепловые лучи, и после долгой полемики с Генрихом Густавом Магнусом (1802-1870) продемонстрировал в 1881 г. сильное поглощение тепловых лучей водяным паром, что имеет, конечно, большое значение для метеорологии.

Так же как применение термоэлектрической батареи обусловило возможность фундаментальных открытий Меллони, применение нового чувствительного термометра - болометра - сделало возможным дальнейшее продвижение в исследовании лучистой энергии. Этот новый прибор был описан в 1881 г. американским физиком Самюэлем Ленгли (1834-1906). Тончайшая полоска платины, покрытой сажей, служащая термочувствительным элементом, является частью электрического контура. Если на полоску падает излучение, то ее температура меняется, и вследствие этого меняется электрическое сопротивление; по изменению сопротивления можно судить об изменении температуры. Болометр - исключительно чувствительный прибор, позволяющий установить изменения температуры с чрезвычайно высокой точностью. Этот новый прибор позволил Ленгли сделать ряд открытий. Он показал, что максимум излучения солнечного спектра находится в области оранжевого цвета, а не инфракрасного, как думали раньше; что инфракрасное излучение сравнительно легко проходит сквозь атмосферу; что количество энергии, необходимое для того, чтобы вызвать видимый эффект, очень сильно зависит от цвета. Наконец, Ленгли измерил для наземных источников очень большие длины волн излучения вплоть до 0,05 мм.

8. СПЕКТРАЛЬНЫЙ АНАЛИЗ

Большой вклад в исследование дисперсии и создание ахроматических линз, начатое еще Доллондом, внес Йозеф Фраунгофер (1787-1826), в ком редкое искусство экспериментатора дополнялось незаурядными способностями теоретика. В свеем

предисловии к собранию сочинений Фраунгофера Э. Ломмель так подытоживал его вклад в практическую оптику:

«Благодаря введению своих новых и усовершенствованных методов, механизмов и измерительных инструментов для вращения и полировки линз... ему удалось получить достаточно большие образцы флинтгласа и кронгласа без всяких прожилок. Особенно большое значение имел найденный им метод точного определения формы линз, который совершенно изменил направление развития практической оптики и довел ахроматический телескоп до такого совершенства, о котором раньше нельзя было и мечтать» (J. von Fraunhofer's gesammelte Schriften, Miinchen, 1888, S. 7).

Йозеф Фраунгофер
Йозеф Фраунгофер

Чтобы произвести точные измерения дисперсии света в призмах, Фраунгофер в качестве источника света использовал свечу или лампу. При этом он обнаружил в спектре яркую желтую линию, известную теперь как желтая линия натрия. Вскоре установили, что эта линия находится всегда в одном и том же месте спектра, так что ее очень удобно использовать для точного измерения показателей преломления. После этого, говорит Фраунгофер в своей первой работе 1815 г.,

«...я решил выяснить, можно ли видеть подобную светящуюся линию в солнечном спектре. И я с помощью телескопа обнаружил не одну линию, а чрезвычайно большое количество вертикальных линий, резких и слабых, которые, однако, оказались темнее остальной части спектра, а некоторые из них казались почти совершенно черными» (Там же, S. 10).

Линии в солнечном спектре были обнаружены еще в 1802 г. Уолластоном, наблюдавшим непосредственно через призму щель в камере-обскуре, сильно освещенную солнечными лучами. Уолластон заметил семь таких линий, из которых пять особенно отчетливых, и, приняв их за линии, разделяющие цвета спектра, больше о них не думал.

Фраунгофер открыл сотни таких линий и внимательно их исследовал. Наиболее резко выраженные линии он обозначил большими и малыми буквами латинского алфавита (А, В, ..., Z, а, b, ...) и зафиксировал их постоянное положение в спектре, ясно понимая их значение для измерения показателей преломления. Он установил, что линия D солнечного спектра находится в том же положении, что и яркая линия натрия в спектре лампы. Его спектроскоп состоял из коллиматора, призмы и зрительной трубыг т. е. по существу из тех же элементов, что и современные спектроскопы., Фраунгофер направил спектроскоп на Венеру и обнаружил, что свет этой планеты содержит те же темные линии, что и солнечный спектр. Исследование спектра электрических искр позволило обнаружить большое число ярких линий.

Заслугой Фраунгофера является введение решеток для исследования спектров. Решетки применялись еще более 100 лет назад Клодом Дешалем (1621-1678), повторившим опыты Гримальди с полированными металлическими пластинами, на которые Дешаль нанес серию близко расположенных параллельных полос. Если тонкий пучок света направить в темной камере на такую пластинку, то он образует спектр на белом экране. Такой же результат был получен и со штрихованной стеклянной пластинкой. Фраунгофер изготовлял решетки из тончайших близко расположенных параллельных нитей или же наносил на стеклянной пластинке параллельные штрихи алмазом. Изготовление решетки требует большого искусства, потому что? для получения спектра необходимо по крайней мере 40 линий на миллиметре поверхности. Фраунгоферу удалось изготовить решетки, содержащие* свыше 300 линий на миллиметре. Этот результат был далеко превзойден в 1883 г. американским физиком Генри Роулендом (1848-1901), изготовившим решетки с 800 штрихами на миллиметре; в настоящее время изготовляют решетки, содержащие даже 1700 штрихов на миллиметре.

Решетки были предметом теоретического исследования Оттавиана Фабрицио Моссотти (1791-1863), крупнейшего представителя математической физики в Италии в первой половине XIX века. Моссотти указал на удобство применения решеток для легкого и точного определения длин волн. Именно для этого, как известно, они применяются сейчас наряду с получением чистого спектра, называемого также нормальным, в котором фиолетовый цвет менее отклонен, чем красный, в противоположность спектруг создаваемому призмой.

Опыты Фраунгофера по исследованию спектров испускания были продолжены в Англии Брюстером, Джоном Гершелем и Фоксом Тальботом (1800-1877). В 1834 г. после многочисленных опытов с пламенем спирта, в котором были растворены различные соли, Тальбот пришел к такому выводу:

«Когда в спектре пламени появляются какие-нибудь определенные линииг они характеризуют металл, содержащийся в пламени» (The Philosophical Magazine and Journal of Science (3), 4, 114 (1834)).

А в следующем году Чарльз Уитстон (1802-1875), исследуя спектр электрической искры, пришел к заключению, что линии спектра зависят лишь от материала электродов и не зависят от газа, в котором проскакивает искра. В 1855 г. Андерс Ангстрем (1814-1874) показал, однако, что, понижая давление газа, можно исключить влияние электродов и получить чистый спектр газа. Удачное содружество конструктора физических приборов Генриха Гейслера (1814-1879) и немецкого физика и математика Юлиуса Плюккера (1801-1868) привело к почти одновременному появлению (1855 г.) трубок Гейслера и трубок Плюккера, весьма удобных для изучения спектра газов.

Несколькими годами раньше Уильям Аллен Миллер (1817-1870), продолжая опыты, начатые Гершелем, исследовал спектр солнечных лучей после их прохождения через разлргчные газы (пары иода, брома и др.) и наблюдал в спектре темные линии, откуда заключил (1845 г.), что наблюдаемые линии - это линии поглощения и соответствуют они только окрашенным, а не бесцветным парам. Этот вывод противоречил утверждению французского астронома Пьера Жансена (1824-1907), известного своими астрофизическими исследованиями, который нашел линии поглощения и в опытах с водяным паром. По поводу интерпретации этих линий развернулась долгая дискуссия, закончившаяся в конце концов признанием того, что это действительно линии поглощения.

Впервые связь между линиями поглощения и линиями испускания была явно показана в 1849 г. Фуко, который наблюдал в спектре электрической дуги между угольными электродами многочисленные яркие линии, среди которых особенно выделялась линия D натрия. Но пропустив сквозь дугу интенсивный пучок солнечного излучения и наблюдая его спектр, он заметил, что линия D стала темной. Отсюда он заключил, что дуга, испускающая линию Z), поглощает ее, когда излучение исходит из другого источника. Это интересное наблюдение не было, однако, развито.

Истинными основателями спектрального анализа были немецкие ученые Густав Кирхгоф (1824-1887) и Роберт Бунзен (1811-1899). Многочисленные претензии других авторов на приоритет, выдвинутые вскоре после того, как выяснилась важность этого открытия, следует считать необоснованными.

Экспериментальным работам Кирхгофа и Бунзена, проведенным с 1859 по 1862 г., весьма способствовало появление скромного приспособления - «горелки Бунзена», описанной Бунзеном и англичанином Генри Роско (1833-1915) в 1857 г. в связи с началом их фотохимических исследований. Новая горелка давала высокотемпературное несветящееся пламя, что позволяло переводить в парообразное состояние различные химические вещества и наблюдать их спектры, не осложненные собственными линиями пламени (во многих случаях эти линии приводили к ошибочным выводам в предшествующих экспериментах). В 1859 г. Кирхгоф и Бунзен опубликовали свою первую экспериментальную работу, а в следующем году Кирхгоф пришел к выводу, подтвержденному также и термодинамическими соображениями, что все газы поглощают в точности те же длины волн, которые они способны излучать. Этот закон называют сейчас законом «инверсии спектра» или законом Кирхгофа. В гл. 13 мы встретимся с применением этого закона в проблеме излучения абсолютно черного тела.

Кирхгоф и Бунзен, кроме того, на основании своих и чужих экспериментов достаточно уверенно установили справедливость идеи Тальбота, что каждая светлая линия в спектре излучения характерна для излучающего ее элемента. Вооруженные этими двумя закономерностями, они приступили к спектральному анализу земных источников излучения, что привело их в 1861 г. к открытию рубидия и цезия - двух металлов, названных ими так по характерным для них красной и голубой линиям спектра (Rubeus - красный, caesius - голубой (лат.). - Прим. перев). позволившим их открыть. В том же году Крукс открыл таллий, в 1865 г. Райх и Рихлер открыли индий, и т. д.

После того как Кирхгоф применил спектральный анализ к свету земных источников, он объяснил остававшиеся до того непонятными линии Фраун-гофера как линии поглощения солнечной атмосферы (а также земной, влияние которой легко, однако, отличить), что явилось важной вехой в истории физики, особенно астрофизики. В 1888 г. Гельмгольц писал, что это открытие вызвало восхищение всех людей и возбудило их фантазию в большей мере, чем какое-либо другое открытие, потому что оно позволило заглянуть в миры, представлявшиеся нам совершенно недоступными.

Как известно, ученые действительно «заглянули» в эти миры, сопоставив линии поглощения в спектрах света, приходящего от звезд, с яркими линиями излучения элементов, известных на Земле, с тем чтобы установить, из каких элементов состоит атмосфера звезд. Такое сопоставление позволило уже Кирхгофу утверждать, что в солнечной атмосфере присутствуют натрий, железо, магний, медь, цинк, бор, никель. Общий вывод, к которому привели многочисленные последующие наблюдения, заключается в том, что элементы, существующие на Земле, распространены повсюду. Иными словами, вся Вселенная построена из одних и тех же материалов.

После Кирхгофа и Бунзена физики в результате огромной экспериментальной работы установили спектры всех известных элементов, измерив длины волн линий и их относительные интенсивности. Картина, которую представляет собой спектр какого-либо элемента, скажем железа или неона, по своему богатству, сложности, разнообразию, интенсивности, цветовой игре не менее величественна, нежели звездное небо. Как и звезды, линии кажутся распределенными беспорядочно. И так же как астрономы каталогизируют тысячи звезд, давая каждой из них описание, необходимое, чтобы ее отличить и характеризовать, так и спектроскописты каталогизируют линии, характеризуя каждую длиной волны, интенсивностью и экспериментальными условиями, при которых она наблюдается. Применение спектрального анализа практически ограничивается сложностью и разнообразием спектров, которые еще более возросли после того, как в конце прошлого столетия было впервые обнаружено, что многие спектральные линии в сильных спектроскопах расщепляются на большое число расположенных рядом отдельных линий, образующих в своей совокупности «тонкую структуру» спектра.

предыдущая главасодержаниеследующая глава





Rambler s Top100 Рейтинг@Mail.ru
© Злыгостев Алексей Сергеевич, 2001-2017
При копировании материалов активная ссылка обязательна:
http://nplit.ru 'NPLit.ru: Библиотека юного исследователя'