НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Проникновение науки в область микромира

(Научные революции III типа - XX в.)

Особенности революций III типа. В отличие от революций обоих предыдущих типов, которые совершались в области познания явлений макромира, в ходе новейшей революции в естествознании диалектика шаг за шагом врывалась в область познания микромира, вскрывая его своеобразие, его качественное отличие. В целом эта революция была направлена на то, чтобы разрушить барьер, стоящий на пути познания микроявлений, сущностью которого была вера в качественную тождественность макро- и микромира. И это проявлялось в том, что "классика" XIX в. ошибочно распространялась на микроявления.


Однако в отличие от предшествующих научных революций обоих типов новейшая революция в естествознании происходила как бы дифференцированным образом: она разрушала основной барьер, стоявший между макро- и микромирами, не сразу, одним ударом, а как бы расчленив его на части, а затем суммируя свои удары по старым воззрениям. Она совершалась поэтапно, переходя с одной ступени познания материи на другую, в глубь материи. Следует отметить, что эта революция охватила все области естествознания, в том числе, например, биологию, где особенно важные революционные перевороты произошли в области генетики (учения о наследственности). Мы ограничимся лишь областью физики, точнее, атомной и субатомной физики, так что этапы новейшей революции в естествознании мы будем прослеживать в связи с тем, как наука XX в. проникала все дальше и дальше в глубь материи.

Начало новейшей революции в естествознании. (I этап)

Крушение понятия неделимого, неизменного атома. В XIX в. господствовало метафизическое представление об атомах как последних частицах материи. Поэтому атомы рассматривались как простые, неделимые частицы, которыми исчерпывалось все наше знание самой материи. Великие открытия физики конца XIX в. - лучей Рентгена, радиоактивности и радия, электрона - свидетельствовали о крушении старых классических представлений об атоме. Рушилась сама вера в исчерпаемость атомов, поскольку они оказывались изменчивыми, сложными и разрушимыми. Само по себе эмпирическое открытие радиоактивности и радия, при всей его важности, еще не делало научной революции до тех пор, пока эти открытия не получили теоретического объяснения. Оно было дано впервые в 1902 г. английскими физиками Э. Резерфордом и Ф. Содди, которые доказали, что радиоактивность есть спонтанный распад атомов, превращение одних элементов в другие. Так, радий превращается в гелий и эманацию радия, названную позднее радоном. С этого момента радий получил название "революционер-радий".

Дж. Дж. Томсон, открывший электрон, попытался создать модель атома. Она у него носила статический характер: положительный электрический заряд был как бы "размазан" по всему атому. Неподвижные же электроны были вкраплены в атом, наподобие того как маленькие зернышки могут быть включены в некоторое студенистое образование. Такая модель просуществовала до 1911 г.

Из начавшейся новейшей революции в естествознании можно было сделать два различных вывода. Первый делали ученые, не понявшие самого смысла этой революции. Они пытались сохранить старую веру в исчерпаемость "последних" частиц материи, но только теперь в качестве таковых сил стали выдвигать уже не атомы, а электроны. Прежние метафизические черты, которыми наделялись раньше атомы, теперь стали приписывать электронам. Однако эта попытка оказалась несостоятельной.

Совершенно иную позицию занял В. И. Ленин. Из начавшейся новейшей революции он сделал правильный вывод о том, что рушилась не вера в исчерпаемость одних только атомов, а вера в исчерпаемость любых, сколько угодно мелких микрочастиц материи. "Электрон так же неисчерпаем, как и атом, природа бесконечна..." Эти ленинские слова выдающийся английский физик С. Пауэлл метко назвал программой всей физики XX в. Они полностью подтвердились в ходе дальнейшей научной революции.

Вступление идеи дискретности в физику. Уже открытие электрона - носителя отрицательного электричества - нанесло первый серьезный удар по классической вере в непрерывность физических функций, в особенности, конечно, в области учения об электричестве. Второй удар по этой концепции нанесла квантовая теория, созданная в 1900 г. М. Планком, согласно которой существует универсальная константа - квант действия, входящий в различные физические величины, в том числе и в выражение энергии, и обусловливающий их прерывистый, дискретный характер. Поэтому такие процессы, как излучение и поглощение света, протекают не непрерывно, а отдельными порциями. Свое открытие Планк сделал, изучая излучение тепла так называемым абсолютно черным телом. Пока излучение тепла и света происходило в огромных количествах, процесс этот казался непрерывным. Его прерывность обнаружилась лишь в условиях максимально возможного уменьшения количества излучаемого тепла. Приведем следующее сравнение: из широко открытого водопроводного крана вода бежит полной струей. Если кран подвернуть, струя станет тоньше, но все же останется непрерывной, цельной. Но если кран завернуть почти до конца, то вода перестанет литься струей, а будет капать, т. е. истечение ее приобретет прерывистый характер. Это, конечно, образное сравнение, но оно позволяет понять, как Планк обнаружил прерывистый характер (квантовый) излучения и поглощения энергии - тепла и света.


В 1905 г. А. Эйнштейн продолжил идеи Планка и показал, что свет обладает не только волновой природой, но и корпускулярной, что он состоит из фотонов. Так рушилась вера в то, что физические явления должны описываться непрерывными функциями.

Уничтожение перегородок между различными сторонами объектов природы. Такие перегородки, возникшие во времена "классики", разделяли между собой вещества и свет, пространство и время, массу и энергию. Своей теорией квантов М. Планк начал разрушать перегородку между понятиями вещества и света, поскольку и он, и особенно А. Эйнштейн показали, что свет обладает также и корпускулярной структурой, а не только волновой, и что этим он сближается с веществом. В неменьшей степени такое их сближение вытекало из открытия П. Н. Лебедева, в том же 1901 г. измерившего давление света. Тем самым доказывалось, что свет обладает своеобразной массой, и этим заполнялась ранее существовавшая пропасть между весомым веществом и невесомым светом, якобы не имеющим массы.

Огромную роль, революционизирующую всю науку, сыграла теория относительности Эйнштейна, созданная им в 1905 г. Она разрушила старую веру в независимость пространства и времени (как основных форм бытия) друг от друга и от движущейся материи. Далее она разрушила веру в независимость между собою массы и энергии как фундаментальных физических свойств материи. Последнее выражалось в новом фундаментальном законе современной физики, согласно которому между массой и энергией существует неразрывная взаимосвязь и количественная относительность.


Так завершается начало I этапа революции III типа. Хотя за это время были созданы новые теории и открыты новые законы в физике, но в целом начало XX в. можно охарактеризовать как фазу революционного крушения "классики", поскольку ответа на вопрос, как же построен атом из электронов, еще не было найдено. Такой ответ составил конструктивное окончание начавшегося I этапа новейшей революции.

Подступы к динамической модели атома. Открытие атомного ядра Э. Резерфордом в 1911 г. вело к признанию динамической планетарно-ядерной модели атома: ядро как миниатюрное "Солнце" в центре, а вокруг него, как маленькие "планеты", движутся электроны. Однако идеи непрерывности, еще не преодоленные, помешали сразу же обосновать такую модель: ведь, согласно классической электродинамике, двигающийся вокруг положительно заряженного ядра электрон должен был непрерывно терять свою энергию и в конце концов падать на ядро, чего не происходит в действительности.

Периодическая система элементов долгое время стояла обособленно от новейших физических открытий, тем более что сам Менделеев к старости относился к ним весьма настороженно, если не сказать отрицательно. Но вот в 1913 г. эти открытия были приведены в прямую зависимость от менделеевской системы. Система выступила как выражение строения атомов и их изменчивости (развития): тем самым обнаружилась взаимная связь между самими физическими открытиями и была раскрыта их глубокая сущность. Так, Г. Мозли показал, изучая характеристические рентгеновские спектры элементов, что элементы имеют порядковые номера, соответствующие занимаемым им местам в системе Менделеева (вскоре было показано, что этот номер равен положительному заряду ядра, а значит, и числу электронов в оболочке атома). Тогда же Ф. Содди и К. Фаянс открыли так называемый закон сдвига, согласно которому при радиоактивном бета-распаде элемент как бы передвигается на одно место направо по системе Менделеева (заряд его ядра возрастает на единицу), а при альфа-распаде - на два места налево, поскольку заряд его ядра уменьшается на два. В итоге вся периодическая система элементов выступила как система развивающихся (изменяющихся) элементов, а отдельные места в ней - как ступени, которые проходят в своем развитии элементы. Тем самым была доведена до конца революция II типа, которая оставалась незавершенной в XIX в.

Завершение первого этапа новейшей революции, создание атомной модели. В том же 1913 г., сводя воедино предшествующие открытия физики, Н. Бор разрешил то противоречие в планетарно-ядерной модели атома, с которым столкнулся Э. Резерфорд. Бор допустил, что излучение или поглощение энергии движущимся вокруг ядра электроном совершается не классическим образом, как непрерывный процесс, а прерывистыми порциями - квантами. Внутри атома электрон, согласно Бору, не может двигаться любым образом, но лишь по строго определенным, дозволенным для него орбитам. Испуская фотон (квант света), он перескакивает на соседнюю дозволенную ему орбиту, находящуюся ближе к ядру, а поглощая фотон, он перескакивает на соседнюю же орбиту дальше от ядра. Таким образом, в созданной Бором модели атома осуществился грандиозный теоретический синтез, с одной стороны, менделеевской периодической системы элементов, а с другой - важнейших открытий физики того времени: лучей Рентгена, радиоактивности, электрона, теории квантов, атомного ядра. В итоге мы видим новый, чрезвычайно мощный подъем научной революции, завершающий ее первый этап. Можно считать, что к этому времени старая механическая картина мира была полностью отброшена. На место механической массы встали электрически заряженные частицы материи, и прежде всего положительный заряд атомного ядра в качестве определяющей характеристики химического элемента. Так возникла новая, электромагнитная картина мира, пришедшая на смену старой, механической.

Несмотря на грандиозный успех новейшей революции в естествознании, в физике не только оставались неразрешенными, но с каждым новым шагом вперед все усиливались глубокие противоречия. Все учение о свете (оптика) было фактически разорвано на две изолированные области явлений: с одной стороны, распространение света, которое подчинялось старой волновой теории и совершалось как непрерывный волнообразный процесс; с другой стороны, поглощение и излучение света, которые совершались согласно теории квантов, т. е. прерывисто. Не лучше обстояло дело и в учении о веществе: классическое представление об электроне, как шарике, и о его движении вокруг ядра по строго определенной орбите, подобно движению планет вокруг Солнца, не в состоянии было выразить тонкие детали оптического спектра, хотя параметры электронных орбит все время уточнялись и усложнялись. Становилось все более очевидным, что классической воровской модели атома органически присущ какой-то недостаток, не устранимый в рамках "классики". Очевидно, здесь действовал какой-то познавательно-психологический барьер, требовавший преодоления.

Дальше в глубь материи. (Следующие этапы научной революции III типа в физике)

Начало II этапа новейшей революции. Суть его состояла в дальнейшей ликвидации остатков "классики". Этот этап характеризовался тем, что рушилась вера в обыденность физических представлений о веществе и свете. Второй этап революции в физике состоял в том, что нужно было ликвидировать остатки "классики".

Это и было достигнуто путем раскрытия подлинного единства между ранее разорванными противоположностями - веществом и светом с их различными структурами.

Создание квантовой механики. Эта теория появилась в 1923-1928 гг. Мне довелось в 1965 г. участвовать в международном симпозиуме ЮНЕСКО (Париж), посвященном 10-летию со дня смерти А. Эйнштейна. Со своими воспоминаниями выступил зачинатель идей квантовой механики Луи де Бройль, который рассказал, как под влиянием Эйнштейна родились у него в 1923-1924 гг. принципиально новые идеи о природе физических микроявлений. Если в свое время Планк перенес признак дискретности (прерывистости) с вещества на свет путем создания квантовой теории, то у Луи де Бройля возникла идея распространить на микрочастицы вещества (электроны и др.) признак волны (волнообразности), присущий свету. В итоге все физические микропроцессы (микрообъекты) как вещества (электроны и др.), так и света (фотоны) выступили в равной степени как единство волны и корпускулы. При этом корпускуле в каждом случае соответствовала волна определенной длины, а волне - определенная корпускула. Так раскрылось диалектическое единство прерывности и непрерывности в микромире, которое не могло быть раскрыто в условиях остаточной "классики". Идеи де Бройля были углублены и развиты дальше австрийским ученым Э. Шредингером, который вывел основное волновое уравнение для микропроцессов (1926 г.), немецким физиком В. Гейзенбергом, сформулировавшим соотношение неопределенностей, английским физиком-теоретиком П. Дираком (1928 г.) и др. Теперь движение электрона вокруг атомного ядра перестало мыслиться в духе обыденных представлений. Сам электрон выступил уже не как миниатюрный шарик, но как корпускулярно-волновое образование, лишенное резких границ и движущееся вокруг ядра не по точно определенным орбитам, а по размытым, подобно движению электронного облака. Вместе с тем был ликвидирован и разрыв оптики на две не связанные между собой части. Таким образом, единство вещества и света было раскрыто с новой глубиной, и новейшая революция в естествознании сделала новый бросок вперед. Можно сказать, что стоявший на ее пути барьер обыденности был верой в механическую наглядность микроявлений. Ибо в основе боровской модели атома лежала идея, что атом можно представить себе наглядно как миниатюрную Солнечную систему. Крушение веры в механическую наглядность атомной модели повлекло за собой признание, что на место такой наглядности должна встать математическая абстрактность наших представлений о микропроцессах. Отсюда еще большее возрастание роли математики с ее абстрактно-математическими моделями в современной физике. И это имело громадное революционизирующее значение для науки.

Ломка электромагнитной картины мира. Начиная с 30-х гг. XX в. в атомной физике были сделаны открытия, которые доказывали ограниченность, а в ряде пунктов - несостоятельность сложившейся электромагнитной картины мира. Все известные ранее микрообъекты либо носили электрический заряд - отрицательный (электрон) или положительный (протон) - либо электромагнитный (фотон). Казалось бы, свойство массы не играет у них существенной роли. Атомное же ядро представлялось как образованное протонами и внутриядерными электронами.

В 1930 г. В. Паули, чтобы спасти принцип сохранения энергии, выдвинул гипотезу нейтрино - микрочастиц, не имеющих массы и заряда и уносящих с собой половину энергии, испускаемой ядром или при бета-распаде (другую ее половину уносят электроны). Так начался подрыв устаревших уже представлений, которые абсолютизировали электромагнитную картину мира. Следующим ударом по этой теории было открытие нейтрона английским ученым Дж. Чедвиком (учеником Э. Резерфорда) в 1932 г. Здесь до известной степени повторилась история с открытием кислорода: супруги Ирэн и Фредерик Жолио-Кюри эмпирически наблюдали образование нейтронов, но, находясь еще во власти электромагнитной картины мира, пытались объяснить наблюдавшееся ими явление с ее позиций, по типу γ-лучей. Напротив, Дж. Чедвик сразу же понял физический смысл того, что наблюдали супруги Жолио-Кюри. Открытый им нейтрон (n°) обладал массой, равной 1 атомной единице, но не имел электрического заряда. Исследования Д. Д. Иваненко и других произвели переворот во взглядах на состав атомного ядра. Отныне оно стало рассматриваться как образованное тяжелыми частицами - протонами и нейтронами.

В 1934 г. супруги Жолио-Кюри сделали замечательное открытие, поскольку оно, на первый взгляд, не выходило за рамки электромагнитной концепции. Они открыли искусственную радиоактивность легких элементов и тем самым доказали, что свойство радиоактивного распада присуще всем элементам, а не только тяжелым, стоящим в конце периодической системы. При этом четко выявилась определяющая роль атомной массы, а не заряда ядра химических элементов. Например, кислород с массой 19 через бета-распад превращается в устойчивый фтор, а с массой 15 через бета-распад - в устойчивый азот. В итоге на место односторонней электромагнитной концепции пришла двусторонняя концепция, учитывающая во взаимосвязи и свойство массы, и свойство электрического заряда. Тем самым осуществился частичный возврат к взглядам Д. И. Менделеева. Это явилось также дальнейшим развитием II этапа революции III типа: если до 30-х гг. на первый план физики выдвигалась электронная оболочка атома, то в 30-х гг. - атомное ядро с его закономерностями. Процесс познания шел по-прежнему в глубь материи.

Начало эры атомной энергии. В 1934 г. Э. Ферми с сотрудниками облучили медленными нейтронами ядра урана и наблюдали явление вторичного бета-распада. К этому времени в физике твердо закрепилось представление, что бета-распад (вылет электрона из ядра) есть показатель сдвига элемента на одно место направо по периодической системе. Другими словами, утвердилась вера в неделимость атомного ядра, которое, сохраняя свою целостность, может испытывать лишь частичные изменения. Между тем, как оказалось позднее, Ферми наблюдал деление ядра урана, вызванное медленными нейтронами. Он же, по старинке, приписал вторичное бета-излучение образованию трансуранов, т. е. элементов, стоящих справа от самого урана в системе элементов. Так продолжалось около пяти лет. И здесь мы снова видим повторение истории с открытием кислорода: принципиально новое явление упорно втискивается в старые, ставшие обыденными рамки.

Когда же в продуктах ядерной реакции при облучении урана медленными нейтронами был обнаружен барий (1938 г.), то немецкие физики О. Ган и Ф. Штрассман правильно разгадали, что они имеют дело с реакцией деления тяжелого ядра на две части: барий и, очевидно, ксенон. При этом выделяются огромная энергия и свободные нейтроны. Последнее обстоятельство позволяет осуществить деление ядра как цепной процесс.


Это был исключительно мощный скачок в ходе научной революции. Можно смело сказать, что с этого момента началась новая эра - эра атомной энергии. С наступлением этой эры рушились барьеры обыденности, мешавшие до тех пор научному прогрессу.

Третий этап научной революции III типа (современность). Скажем коротко: происходит дальнейшее проникновение в глубь материи, в глубь ее элементарных физических частиц. При этом обнаруживаются все новые и новые, совершенно необычные для нас явления, требующие коренной ломки ранее сложившихся и ставших достаточно привычными, понятными представлений. Можно сказать, что дальнейшее разрушение веры в тождественность макро- и микромиров выступает на этот раз как крушение веры в привычное. Покажем это на двух примерах.

Трактовка "структуры" элементарных частиц. Люди издавна привыкли рассматривать строение какого-либо тела или сооружения таким образом, что строительный материал (кирпичи) дан в готовом виде, как заранее существующий и сохраняющийся в процессе всей стройки. Назовем это верой в данность готовых частиц. Было бы очень странным, если бы такие готовые частицы отсутствовали, т. е. не были бы нам даны как исходные формы. Строить что-либо было бы, кажется, невозможным. Между тем такие элементарные частицы, как протон, нейтрон и некоторые другие, можно представить себе образованными в виде наложившихся одна на другую сфер, "шуб". В каждой из этих сфер (оболочек) может и должна при строго определенных условиях возникнуть определенная элементарная частица. Ее еще нет, но она уже присутствует как возможная (виртуальная). Таким образом, внутреннее строение нейтрона или протона может быть представлено как образованное из неродившихся еще или только нарождающихся других микрочастиц. Как видим, ломка привычных человеческих представлений здесь идет очень далеко. И в этом опять-таки неуклонное продвижение научной революции в область "странных", неожиданных открытий, явно несогласуемых с обычным здравым смыслом, но вместе с тем носящих глубоко диалектический характер.

Гипотеза кварков. До недавнего времени считалось, что такие свойства элементарных частиц, как их электрический заряд или масса, носят целочисленный характер. Так, для электрона мы имеем отрицательный электрический заряд, равный -1, и собственную массу (массу покоя), равную 1 электронной единице. Это стало привычным представлением. Однако в ходе научной революции вера в привычное и здесь подверглась ломке. Была выдвинута гипотеза кварков, согласно которой определенные свойства элементарных частиц могут быть представлены как образованные из их дробных значений, которые приписываются кваркам. Конечно, легко было бы представить дело так, что кварки - это более мелкие микрочастицы, из которых образуются такие частицы, как протон и нейтрон (нуклоны), подобно тому как атомное ядро образуется из протонов и нейтронов. Так ли это в действительности - покажут исследования, которые в настоящее время идут полным ходом. Во всяком случае, приходится ждать еще многих интересных открытий, которые будут ломать сохраняющиеся в науке, ставшие привычными, но уже устаревшие представления.


На этом мы заканчиваем рассмотрение отдельных научных революций и их основных типов. Изложенное дает нам большой материал для размышления над общими взглядами на научные революции.

Великий переворот в генетике. Новейшая революция в естествознании, начавшись в физике, захватила и другие естественные науки: химию, астрономию, геологию и в особенности биологию. Если в физике она проявилась в распространении идеи дискретности (прерывной, зернистой структуры физических микрочастиц материи), то и в биологии (генетике) мы видим в сущности ту же картину. Но так как объект биологии - жизнь - значительно сложнее, нежели объект микрофизики, то и проникновение сюда идеи дискретности происходило гораздо труднее и медленнее.

Еще в 60-х гг. XIX в. чешский ученый Г. И. Мендель обнаружил чисто эмпирически, что у растений-гибридов различные передаваемые по наследству признаки от родителей распределяются в соотношении 3:1. Это прямо наводило на мысль, что в основе явлений наследственности лежат какие-то еще неизвестные дискретные (кратные образования), подобно тому как в химии открытие закона простых кратных отношений в свое время привело к созданию химической атомистики.

Кстати сказать, в те же годы в веществах клеточного ядра растений были эмпирически обнаружены особые нуклеиновые (от "нуклеус" - ядро) кислоты. Однако их роль в процессах жизнедеятельности не была еще установлена. Это напоминало историю открытия клетки.

Американский ученый Т. X. Морган, открыв хромосомную теорию, сделал попытку проникнуть в сущность явлений наследственности. Однако объяснить, что такое наследственность удалось лишь в середине XX в., когда впервые была установлена истинная роль нуклеиновых кислот в таких важных явлениях, как наследственность, обмен веществ и др. С этого момента мы вправе считать, что новейшая революция в естествознании захватила и область биологии.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru