НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Без участия тяжести

Между прочим, одним из первых, кто задумался над этим вопросом, был К. Циолковский. И не только задумался, но и попытался ответить. В его труде «Грезы о Земле и небе и эффекты всемирного тяготения», изданном в Москве в 1895 году, одна из глав так и называлась: «Описание разных явлений, происходящих без участия тяжести». Великий пророк космонавтики первым обратился к процессам, которые могут протекать в невесомости.

Любопытно, что внимание современных материаловедов и технологов длительная невесомость не привлекала к себе даже после того, как успехи практической космонавтики ошеломили человечество. Понадобились сотни полетов автоматических и пилотируемых аппаратов, чтобы вызвать интерес к исследованию производственных процессов вне Земли. В результате первый технологический эксперимент в космосе был поставлен лишь в 1969 году. На борту корабля «Союз-6», в его орбитальном отсеке, установили сварочный агрегат «Вулкан», разработанный специалистами Института электросвар, ки имени Е. О. Патона АН УССР. Во время полета бортинженер В. Кубасов, разгерметизировав отсек, включил агрегат и попробовал три вида сварки - электронным лучом, сжатой дугой и плавящимся электродом. Так было положено начало экспериментальной космической технологии.

Без участия тяжести
Без участия тяжести

Затем последовали другие запуски советских и американских аппаратов и кораблей. Были продолжены исследования возможностей осуществления на орбите различных технологических процессов, производства веществ и материалов с необычными свойствами и характеристиками. Теперь перспективы в этой области волнует воображение. Конкретные технические проблемы космической технологии обсуждаются на совещаниях и симпозиумах. Конструкторы создают особые инструменты и оборудование для космического производства. Словом, сегодня будущее индустрии уже невозможно cебе представить без участия таких помощников, как космический вакуум и невесомость.

Говорят, железные перила набережной Фонтанки в Ленинграде впервые покрасили в 30-е годы нашего века. А ведь отливали их еще до рождения А. Пушкина. Около, двух столетий ничего не могла поделать ржавчина с этим железом. Специалисты объясняют удивительную его стойкость, в частности, и тем, *что в нем почти нет таких примесей, как сера и марганец. Или еще один пример. На окраине индийской столицы вот уже более пятнадцати веков возвышается семиметровая железная колонна, на которой не найти никаких следов коррозии. И это в условиях влажных тропиков. Секрет, как уверяют материаловеды, состоит в том, что колонна на 99,8 процента состоит из чистого железа.

Сейчас научились получать не просто чистые - чистейшие металлы. Есть, например, образцы, содержащие 99,9999 процента железа, или, как говорят специалисты, чистотой в шесть девяток. Оно не вступает в химические реакции даже с кислотами, остается податливым в обработке, мягким, а не хрупким, даже при температуре 200 градусов ниже нуля.

По мере повышения «чистоты» различных веществ росло и количество обнаруживаемых или неожиданных свойств. Цинк чистотой в пять девяток не вступает в реакцию с кислотой. Сверхчистый вольфрам приобретает высокую пластичность: при температуре до 700 градусов его можно вытянуть в проволоку диаметром в сотую долю миллиметра или раскатать в фольгу. Когда медь освобождают от примесей висмута, она теряет хрупкость. Сегодня радиоэлектроника, химическая и атомная промышленность, машиностроение, многие другие отрасли народного хозяйства испытывают всевозрастающую потребность в высокочистых бес имесных материалах. Шесть-восемь девяток - вот гаЙ чистоты нужны уран, торий, графит, берил в ядерной технике.

Не меньшие требования к материалам в ракетно-космической технике.

Придумано немало способов очистки материалов в земных условиях. Но почти все они требуют создания космического вакуума, а на Земле это сопряжено с решением труднейших научно-технических проблем, с крупными затратами материальных средств. При переносе же в космос появляется возможность в комплексе использовать сразу два таких важных фактора, как невесомость и глубокий вакуум.

Существующие способы очистки привели, как считают специалисты, ко второму рождению материалов. Ну а если у самых чистых сегодня металлов, полупроводников, изоляторов удастся уменьшить примеси еще в десятки и сотни раз, не возродятся ли они в третий раз, проявив невиданные доселе свойства? Вот почему материаловеды так заинтересовались в пополнении фонда сверхчистых веществ. И в этом поиске космическая продукция призвана сказать свое слово. Она поступит в лаборатории химиков и физиков, фармакологов и биологов, металлургов и оптиков.

Необычные свойства приобретают вещества не только за счет сверхчистоты своего состава. Не меньшее значение имеет и совершенство внутренней структуры материала. Например, в металлах границы между кристалликами - самое уязвимое место. Именно там образуются микротрещины. Но если материал представляет собой единое целое или монокристалл, то в нем нет никаких границ. Поэтому его прочность близка к предельной, зависящей лишь от силы сцепления атомов. В 30-х годах ныне академики А. Александров и С. Журбов, измерив прочность на растяжение кварцевых нитевидных кристаллов, получили поразительные результаты - 1300 кг/мм2. Это почти в десять раз больше, чем предел прочности высококачественной стали. Оказалось, чем тоньше нитевидные кристаллы, тем они прочнее. Волокна из сапфира, например, выдерживают усилия до 2000 кг/ мм2.

Такие сверхпрочные нити технологи хотели использовать в так называемых композиционных материалах - композитах, где они играют роль своеобразной арматуры. Однако в земных условиях не удается вырастить длинные нити: под действием тяжести они гнутся, ломаются на отрезки, не превышающие нескольких миллиметров. В космосе же нет принципиальных ограничений для получения кристаллических нитей любой длины и выращивания монокристаллов значительных размеров.

В экспериментах на орбите уже удалось вырастить гораздо более крупные и совершенные кристаллы, чем в лабораториях на Земле. К тому же в невесомости они растут быстрее. Вот, скажем, перспективным материалом в полупроводниковой технике считается соединение, состоящее из атомов кадмия, ртути и теллура. Из такого материала можно изготовить эффективные фотоприемники инфракрасного излучения. Диапазон их «зрения», как полагают специалисты, был бы очень широк - от 1 до 35 микрометров (мкм). Напомню, что существующие сейчас электронно-оптические преобразователи принимают ИК-излучение с длиной волны лишь до 8 мкм. Но вот получить однородные монокристаллы такого соединения, у которых составные элементы распределялись бы равномерно по всему объему, никак не удавалось. Попытались это сделать 10. Романенко и Г. Гречко на станции «Салют-6». Они расплавили, а затем охладили твердый раствор «кадмий - ртуть - теллур». Результаты порадовали специалистов: монокристалл образовался с неплохой однородностью, без пор. Конечно, потребуются новые эксперименты, чтобы отыскать пути к полному успеху. Однако эти трудности преодолимы.

Сейчас все большее распространение в технике получают системы волоконной оптики. Один из основных элементов этих систем - световод - тонкая стеклянная нить. Луч, войдя в один конец световода, как вода в трубе, распространяется внутри его, многократно отражаясь от его внутренних стенок, выходит из другого. Такую трубку-волокно можно буквально завязать в узел. С помощью световых, то есть весьма коротких электромагнитных волн, по световоду можно передавать гораздо больше информации, чем, скажем, посредством радиоволн. Световод толщиной в одну сотую миллиметра, как уверяют специалисты, вполне способен обеспечивать прохождение сразу 12 телевизионных программ или сотни тысяч телефонных переговоров. Если вместо обычных проводов на современном самолете применить стеклово-локонные, это уменьшит в несколько раз вес радиосвязного оборудования. Словом, у волоконной оптики заманчивое будущее. Дело только за технологами - от них ждут подходящих стеклянных нитей. Но получить их непросто.

Качество световода зависит от точности соотношения между диаметрами стержня и оболочки, а также между их показателями преломления. Попадись на границе раздела неоднородности, превышающие по размеру длину волны света, - и хорошего световода не получится. Такое же нежелательное влияние оказывает и загрязнение стекла тяжелыми ионами, парами воды. Уберечься от этих «технологических врагов» в земных условиях чрезвычайно трудно. А вот в космосе справиться с ними проще. В невесомости легче удалить ненужные примеси при бесконтейнерной плавке и выравнивать диаметры за счет преобладающей роли сил поверхностного натяжения в расплаве стекла.

Надо сказать, что технология получения стекла очень сложна. По этой причине и космические эксперименты со стеклом пока еще довольно редки. В марте и декабре 1976 года при запуске советских высотных ракет впервые проделали опыты с плавкой стекла. Через два года на борту космического комплекса «Салют-6» - (Союз-29» - «Союз-31» летчик-космонавт ГДР 3. Иен провел плавку специального оптического стекла, которая длилась 20 часов, на установке «Сплав-01». Исследования полученных образцов, по мнению технологов, принесли любопытные и ценные данные. Таковы первые шаги. И все же специалисты уверены, что в орбитальном литейном цехе удастся производить тонкие и очень длинные стеклянные нити, которые на Земле неизбежно разрываются от собственной тяжести, не успев затвердеть. Так что стеклопроводы длиной в сотни метров будут сугубо космической продукцией. Разумеется, это не придет само. Космос не слишком охотно открывает свои секреты. Вспомним хотя бы поучительную историю с попыткой получить на орбите идеальные шарики.

Начну 6 такого интересного явления: капля жидкости в невесомости свободно висит в пространстве, ни на что не опираясь, и при этом непременно принимает форму шара. Кстати, образуется не просто жидкий шар, а сверхточный. Под действием сил поверхностного натяжения его форма близка к абсолютной сфере. Например, по расчетам для капли расплавленного алюминия, находящейся на высоте 320 километров от Земли, отклонения от идеала составят какие-то десятимиллионные доли процента. Это-в тысячи раз меньше, чем существующие допустимые нормы для шарикоподшипников.

Современные литейные формы и прокатные станы, штампы, режущие и шлифовальные инструменты не в состоянии сделать шарики так близки к абсолютной сфере, если, конечно, не идти на непомерные затраты времени и средств. Между тем отклонения от идеальной формы вызывают биения, .особенно при высоких оборотах вращения. И они - одна из главных причин износа подшипников. Расчетная долговечность шариковых подшипников, скажем, трамвая, грузовых автомобилей, токарных, фрезерных и некоторых других станков не превышает 20 тысяч часов - приблизительно два года непрерывной работы. У стационарных молотилок в пять раз меньше, а в комбайнах и вовсе около полутора месяцев. Согласитесь, этого явно недостаточно. Неудивительно, что технологи в одном из первых своих экспериментов на орбите решили прежде всего попробовать выплавить идеальные шарики.

Казалось, все предельно ясно, и удача сама упадет в руки. Может быть, поэтому опыт решили не слишком усложнять - ведь и нужно-то было для начала лишь подтвердить столь очевидный принцип. Это был эксперимент «Сфера», который поручили провести космонавтам Б. Болынову и Б. Жолобову на борту орбитальной станции «Салют-5».

В космос взяли заготовки из сплава Буда, в который входят висмут, свинец, олово и кадмий. Он отличается низкой температурой плавления - чуть выше 60 градусов: удобное свойство - можно легко и быстро расплавить. И вот металл расплавили на борту станции. Поршнем его выдавливали из печи в лавсановый мешочек длиной около 30 сантиметров. Полагали, что жидкая масса, падая, успеет в таком пространстве оформиться и затвердеть, прежде чем прикоснется к стенке. И что же увидели, когда на Земле вскрыли мешок?

Перед обескураженными специалистами лежали совсем не шарики и даже не горошины, а бесформенные, хотя и округлые, кусочки металла. Их поверхность удручала еще больше: она вся была покрыта хаотически расположенными волокнами. «Какой-то еж-уродец», - прокомментировал В. Жолобов. Как показал анализ, внутренняя структура образца в результате переплава на орбите тоже сильно изменилась: нарушилось равномерное распределение компонентов по объему, образовались отличающиеся по составу иглообразные кристаллики и т. д. Попробовали в лаборатории подобрать условия плавки, при которых получились бы сходные структуры - ничего не вышло. Добавлю, что и в эксперименте «Универсальная печь», проведенном в совместном советско-американском полете «Союз» - «Аполлон», было обнаружено аналогичное ухудшение однородности сплава. Объяснения столь странному итогу космической плавки ученые пока не находят - нужны дальнейшие исследования. Б общем, атака в лоб себя не оправдала, значит, нужна планомерная, упорная осада.

В конце концов, лично я не сомневаюсь в том, что космическое производство идеальных шариков будет налажено. Да еще каких - полых. О таких шариках, к примеру, для подшипников, на которых вращаются роторные винты вертолетов, давно мечтают авиационные инженеры. Сейчас полые шарики сваривают из двух половинок, но шов остается слабым местом. А если сделать их из сплошного куска металла, то подшипники станут в пять-восемь раз долговечнее. Так считает академик Б. Патон.

В принципе космическую технологию изготовления подобных шариков можно представить следующим образом. Внутрь жидкой капли металла под давлением впрыскивают газ. После ввода шприца отверстие затягивается, пузырь под действием сил поверхностного натяжения занимает центральное положение, образуя шар. Расплав затвердевает, и газ оказывается замурованным. Вот и готов полый шар. Он гораздо прочнее сплошного: под нагрузкой он упруго деформируется, форма и целостность его не нарушаются.

Расчеты показывают, что в космосе можно из жидких металлов выдувать не только небольшие пустотелые шарики, ио и огромные тонкостенные оболочки. Да если дать в руки конструкторов такую возможность, но, наверное, строительство больших орбитальных станций будет выглядеть совсем не так, как это представляет сегодня.

Скажем, несколько оболочек, пока они еще жидкие, объединяют в подобие гигантской пены. Когда она затвердеет, то получится единое целое, без швов и стыковочных узлов. Отдельные ячейки останется лишь превратить в помещения станции, разместив в них соответствующее оборудование.

Накладывая пленки из жидких металлов на карка^ любой конфигурации, можно изготавливать на орбите конструкции бесконечно разнообразных форм. Как' знать, не они ли станут основой космической архитектуры будущего?

Однако давайте теперь, поговорив о «воздушных замках» из металлизированной пены, спустимся на Землю. Между прочим, здесь пеноматериалы уже давно не фантастика. Например, пенобетон. Его производят сейчас в значительных количествах и все шире используют в строительстве. Еще бы, он не уступает железобетону яо прочности, но вдвое легче. Кроме того, пенобетон обладает высокими теплоизоляционными качествами. Вот вам подтверждение того, насколько необычными свойствами наделены твердые пористые материалы, даже когда у них далеко не идеальная внутренняя структура.

А если воспользоваться условиями космоса, где устойчиво существуют жидкие пены из любых материалов? Ведь это все равно что открыть дверь в мир совершенно невероятных материалов. Например, стальной брусок, изготовленный в невесомости и на 87-88 процентов наполненный газом, будет плавать в воде, как дерево. Крыло самолета из подобного материала получит свойства нержавеющей стали и плотность алюминия. И это только за счет того, что в невесомости пузырьки газа в расплаве металла не всплывут и не осядут, так как нет гравитационного притяжения Земли, а равномерно распределятся в его толще.

Инженеры-технологи уже прикидывают подходящие способы изготовления пеноматериалов в космосе. В одном из вариантов предлагают расплавленный металл и газ подавать в вакуумную камеру одновременно. Другой метод посложнее, он требует перемешивания по мере подачи газа. Правда, технологи опасаются, что при этом пузырьки газа начнут сливаться, ухудшая тем самым качество материала. Еще один способ предусматривает введение газа в металл под высоким давлением и быструю подачу смеси в вакуумную камеру. Резкое падение давления вызовет появление пузырьков, которые равномерно вспучат жидкость, подобно тому как это происходит, когда открывают бутылки с шампанским.

Так обстоит дело с пеноматериалами, в которых успешно сочетаются столь непохожие друг на друга газ и твердое вещество. А если взять сплавы, где составляющие взаимно растворимы? Казалось бы, невесомость не в состоянии улучшить процесс их получения. Ведь главное здесь - непрерывное перемешивание. Именно оно способствует лучшему растворению одного расплава в другом. Однако при изготовлении сплавов из компонентов, существенно отличающихся своей плотностью, возникают немалые трудности. Стоит прекратить перемешивание, как при охлаждении жидкости расслаиваются. Механические, электрические и многие другие качества сплава резко ухудшаются. В итоге на Земле не удается получить отдельных сплавов с нужными свойствами.

Вот, например, так называемый ТН - сплав, состоящий из титана и никеля. Установлено, что он наделен... памятью. Если проволоке или листу из этого сплава придать какую-то форму, а затем, охладив, смять или сплющить, то при нагревании до прежней температуры искореженный кусок обретает первоначальную форму, как бы «вспоминает» ее. Нетрудно вообразить заманчивые перспективы использования такого рода материалов. Скажем, в космос или под воду доставляются в компактном виде конструкции и сооружения, а уже на месте они принимают заданные им размеры и формы.

Свойство своеобразной «памяти» обнаруживают и некоторые другие сплавы - золото с кадмием, медь с алюминием, марганец с медью. Список этот быстро растет. Да вот беда, на пути производства «памятливых» сплавов в земных условиях встают большие трудности. Составляющие их компоненты сильно различаются между собой. Никель, например, вдвое тяжелее титана. Академик А. Белов, возглавляющий Всесоюзный институт легких сплавов, сетует: «Самое трудное здесь - технология. Очень тонки, капризны режимы изготовления подобных сплавов». А вдруг в невесомости эти режимы окажутся не столь капризными? Или сами сплавы преподнесут металловедам еще более неожиданные эффекты. Во всяком случае, уверен, что эксперименты с этими замечательными материалами обязательно появятся в программе будущих полетов орбитальных научных станций.

Примеров того, что может космос в области создав ния новых материалов и чего ждут от него технологи, я мог бы привести множество. Но возникает резонный вопрос: насколько реальны все эти ожидания п надежды? Ведь даже отдельные имеющиеся удачи в получении над орбите новых материалов обходятся слишком дорогое Конечно, космические сплавы и кристаллы, а некоторым из них уже используются б действующих опытных установках и приборах, стоят пока недешево. Но эта первоначальная дороговизна не смущает технологов. Достаточно, например, напомнить о том, как промышленность осваивала алюминий. Еще в прошлом веке этот серебристый металл, добываемый из глинозема, который, что называется, «валяется под ногами», считался драгоценным: так велики были трудности его производства. Однако прошло время, появилась в достатке относительно дешевая электроэнергия, родилась технология выплавки алюминия методом электролиза. И вот результат - алюминиевая посуда стоит сегодня в любой кухне.

Сейчас специалисты считают, что уже на современном уровне развития космонавтики пора осваивать производство на орбите отдельных уникальных изделий. Предполагается, что через 10-15 лет оно станет вполне рентабельным.

Рассматривается, например, возможность изготовления в космосе кристаллов граната, применяемых в элементах памяти ЭВМ для улучшения их характеристик. По мнению зарубежных специалистов, потребность в этих кристаллах на 80-е годы оцениваются стоимостью более одного миллиарда долларов. Если часть из них покрывать за счет космического производства, то это составит весомую экономию. Особого внимания заслуживает организация производства на орбите некоторых новых сверхпроводящих сплавов с повышенной критической температурой или оптического стекла для мощных лазеров. Только за счет этого удалось бы буквально преобразить целые отрасли техники.

Думаю, к концу нашего столетия космическая индустрия будет развернута в самых широких масштабах. Если немного пофантазировать, то нетрудно себе представить целые заводы на дальних орбитах вокруг Земли - заводы необыкновенные! Это будут предприятия без крыш и полов, раскинувшиеся на немалых пространствах - этакий «рой» летящих по орбите промышленных установок, реакторов, устройств. А между ними снуют транспортные пилотируемые и автоматические грузовые корабли, доставляющие на орбиту сырье и вывозящие готовую продукцию. Но сначала все это надо будет построить. Вот почему именно космос станет самой большой мастерской человечества. И люди уже сегодня учатся в ней работать. Очень нелегки первые эти шаги.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru