Под «солнечным ветром»
Есть в Москве на Ленинских горах место, где Луна так близка, что ее можно потрогать. Конечно, такое проделать на самом деле не удастся, и все же сознание того, что рядом, за стенами здания с вывеской «Институт геохимии и аналитической химии имени^В. И. Вернадского», находится кусочек нашей ближайшей соседки по космосу, никого, по-моему, не оставляет равнодушным.
В этом «лунном доме» была вскрыта первая капсула с первым грунтом, доставленным советской автоматической станцией «Луна-16» из Моря Изобилия. Сюда же привозили подобные капсулы с «Луны-20», «Лу-ны-24». Здесь в одном из отсеков лаборатории - «лунный склад». В специальных контейнерах хранятся бесценные образцы, среди которых есть и «лунные камни», собранные на Луне американскими астронавтами. Не музейными экспонатами стоят они в боксах. Их изучение ведется постоянно: в лунном мире так много еще непознанного, таинственного.
В лабораторию обращались за советом конструкторы, создавая новые аппараты для исследования Селены. Много месяцев работали среди морей и гор советские луноходы, и мы удивлялись их неутомимости и отличным ходовым качествам. Но они стартовали с Земли лишь после того, как ученые передали конструкторам данные о механических свойствах лунного грунта, о нехоженой поверхности Луны, по которой предстояло путешествовать космическим автоматам.
Лунная лаборатория напоминает миниатюрный завод. Здесь можно взвешивать вещество и распиливать его частицы, проводить» рентгеновский анализ и измерять магнитные свойства. И когда этот «завод» заработал на полную мощность, ученые столкнулись со многими неожиданными вещами. Об одной из них и пойдет речь.
Сколько сейчас различных металлов в человеческом обиходе? Наверное, можно подсчитать, но, думаю, и так ясно: много. А сколько люди теряют металла ежедневно, ежечасно из-за коррозии? Точное число назвать не берусь. Однако в одном из своих выступлений академик Я. Колотыркин привел такой факт: в развитых странах коррозия «пожирает» ежегодно около десятой доли национального дохода. В масштабах нашей страны это многие миллиарды рублей.
Коррозия, словно раковая опухоль, возникая, неумолимо распространяется по всему телу металлических изделий, будь то корпус судна или кузов автомобиля, водопроводные трубы или стенки атомных реакторов. С коррозией борются. Разрабатывают различные покрытия, ищут способы замены металлов стойкими пластмассами и даже стеклом, используют так называемые ингибиторы коррозии. Но все эти меры либо слишком дороги, либо недостаточно эффективны. Металлы продолжают ржаветь. Так на Земле. А вот на Луне...
Чистое железо в лунном грунте - реголите - обнаружили сразу. Оно покрывает тончайшей (в одну деся-' тую микрона!) пленкой большую часть его поверхности. Ученые предположили, что стоит этому самому лунно-* му железу оказаться в земных условиях, то оно тут же окислится. Сомнений, в общем-то, не было, но решили убедиться на опыте: извлекли кусочек реголита из камеры, где он хранился в «космической среде», и оставили на воздухе. Прошла неделя, другая, месяц, потом почти' четыре месяца, а приборы неизменно отмечали, что лунный металл не окисляется, не сгорает.
«Не может быть, - сказал академик А. Виноградов, когда ему сообщили об этом сюрпризе. - Проверьте еще раз и найдите свою ошибку. Это же элементарно: железо, да еще в такой степени измельченное должно неизбежно сгорать».
Эксперименты повторяли снова и снова. И с той же настойчивостью лунный грунт «сигналил» о наличии чистого, неокисленного металла.
О странном поведении реголита академик А. Виноградов упомянул в докладе о предварительных результатах исследований на Президиуме Академии наук СССР. Академик М. Келдыш, который вел заседание, заметил: «Если вы поймете, как получается на Луне такое железо, и научите нас его производить в земных условиях, то это окупит все расходы на космические исследования». Он распорядился не жалеть лунный грунт для исследований, помог привлечь к ним широкий круг специалистов из других исследовательских учреждений.
К работе приступили сотрудники Института геохимии и аналитической химии имени В. И. Вернадского АН СССР, Института общей и неорганической химии имени Н. С. Курнакова АН СССР, Института геологии рудных месторождений, петрографии, минералогии и геохимии АН СССР и несколько позднее- Института металлофизики АН УССР...
Опыт повторялся многократно у нас, а затем и в США. В рентгеновских фотоэлектронных спектрометpax тончайшим слоем наносился на своеобразную мишень лунный реголит. Его подвергали рентгеновскому облучению и последующему анализу. Все эксперименты убедительно подтверждали: в лунном реголите есть чистое железо. Пробовали исследовать его на разных установках. Не сразу был получен нужный результат. Выяснилось, что чистые металлы лежат на самой поверхности, в самом верхнем и тонком слое крупинок грунта. Вот почему столь вроде бы очевидное отыскивалось долго и трудно.
Парадоксально, но факт: на поверхности можно «запрятать» секрет гораздо надежнее, чем в глубине. Так и сделала природа с лунным реголитом. Чистое, восстановленное железо занимает здесь тончайший слой толщиной порядка 20 ангстрем. Дальше обыкновенные окислы. Если сравнить с земными образцами, где сверху коррозия, а под ней - чистый металл, то на Луне все наоборот. Как только начинают «прощупывать» приборами атомы, лежащие чуть глубже этого таинственного слоя, то никаких чудес - обыкновенная картина окисленного металла. Преподнесли сюрприз и американские образцы лунного грунта, изученные в советских институтах. Они оказались подобными слоеному пирогу: железо - окислы - железо. Почему? Пока ученые лишь строят гипотезы.
Но вернемся к работам Института металлофизики. Анализ поверхности реголита не только подтвердил результаты предыдущих исследований по железу, но принес и новые: установлена аналогичная неокисляемость в земных условиях лунного титана и кремния. Так родилось открытие, внесенное в Государственный реестр под номером 219: «Свойство неокисляемости ультрадисперсных форм простых веществ, находящихся на поверхности космических тел». Науке стало известно, что чистое железо, титан, кремний, доставляемые с Луны, не окисляются и на Земле.
Естественно, ученых заинтересовал вопрос: почему это происходит? Стали моделировать лунные условия: земные материалы подвергали резким перепадам температур в вакууме. Железо восстанавливалось, но ненадолго. Затем бомбардировали их протонами. Железо и титан восстанавливались, а кремний - нет. Наконец «обстреляли» ядрами аргона и получили желаемый результат: все три элемента не только восстановились, но и впоследствии не окислялись в атмосфере.
Итак, на вопрос: «Чем закаляются металлы от коррозии?» - последовал ответ: «Солнечным ветром».
Солнечный ветер... Не правда ли, поэтическое название нашли ученые потоку частиц, несущихся от нашей звезды? Именно этот ветер поможет будущим космическим каравеллам путешествовать в пространстве - есть почти фантастические проекты таких «парусников» для вселенной. Но в нашей истории солнечный ветер играет созсем иную роль - он превратился в металлурга.
Покрывающий поверхность Луны реголит - это смесь обломков пород, минералов, стекол, спеков, образовавшаяся под действием метеоритного дождя и пото-: ков заряженных частиц. И чтобы объяснить, как появилось железо, надо учесть все факторы. Предположим, ударяется о поверхность Луны железный метеорит. Взрыв. Метеорит испаряется, вещество затем начинает конденсироваться. Может л-и при этом появиться железо? Без сомнения. И свидетельство тому - лунные стекла и спеки, где отмечается наибольшая концентрация не-окислснного железа.
Теперь о солнечном ветре, а точнее, о протонах, которые в нем содержатся. В одном случае они выбивают с поверхности частиц реголита летучие элементы, снижают в ней количество кислорода. Это, так сказать, физическое воздействие солнечного ветра. Но в реголите идут и химические процессы, и, вероятно, они играют решающую роль.
Теория, даже весьма убедительная, требует экспериментальной проверки. Чтобы доказать, насколько расчеты верны, нужно в земных лабораториях имитировать лунные условия и получить то самое железо, рождение которого столь необычно.
Земные базальты схожи с лунными породами. Их и взяли объектом экспериментов. Однако на пути исследователей встали огромные трудности. Вакуум, который удалось получить в установках, моментально «загрязнился». Ученым удалось получить лишь ничтожное количество «лунного железа». Началось моделирование воздействия солнечного ветра на металл. Пластинки подвергали интенсивной атаке ионами аргона. Коррозионную устойчивость металла удалось повысить.
Это были годы поисков и сомнений, удач и разочаровании. А в лаборатории лежали образцы реголита, привезенного в 1970 году «Луной-16», а затем «Луной-20» и «Луной-24». Проходили месяцы и годы, но содержание в них неокислснного железа не уменьшалось. И этот немой представитель Луны заставлял искать пути к тайне.
Возникали предположения: а может быть, все гораздо проще? И если взять чистое земное железо, оно в этих условиях тоже не будет окисляться? Изготовили тонкие пластинки из сверхчистого железа. Поверхность их тщательно отполировали. Но прошло совсем немного времени, и выяенилось, что пластинка покрылась тончайшим слоем окисла. А лунное железо по-прежнему оставалось устойчивым, словно не на Земле оно находилось.
Наверное, удалось бы раньше получить конечные результаты, если проводить опыты в космосе, на борту станций или спутников. Природа работает в чистейшем вакууме,, а воссоздать его в лабораториях и одновременно экспериментировать в нем необычайно сложно. И все же многолетние исследования большого коллектива смогли преодолеть, казалось бы, непреодолимые препятствия. Разобрались, почему и каким образом рождается лунное железо. В нем нет «центров окисления», а процесс коррозии словно цепная реакция: стоит ему начаться в одном месте - и он распространяется на весь металл. Опыты показали, что можно улучшать коррозионную стойкость металлов, если обрабатывать их пучками ионов.
Вот перед нами диск из нержавеющей стали. На нем написано: «Луна». Только надпись на диске подверглась атаке ионных пучков. Затем ученые поместили диск в пары «царской водки» - смесь крепких кислот, - через 15 минут он покрылся ржавчиной, а слово «Луна» сияло первозданной чистотой.
Дипломом на открытие отмечена большая группа ученых. Это итог сделанного и одновременно рождение нового направления исследований. В некоторых областях техники очень эффективно использовать обработку металла ионными пучками, в частности в электронике, в приборостроении. Пока рано говорить о широком применении этого метода - еще продстоит создавать специальную аппаратуру, искать новую технологию. Не исключено, что со временем и в космосе ионные пушки будут обрабатывать металлические детали, которые потребуются для космических сооружений...
Ну а появятся ли на Земле металлургические заводы, производящие «лунное железо»? В принципе такой завод легче построить на Луне или в космическом пространстве, где есть необходимый вакуум «в неограниченном количестве», но... Впрочем, для нас это трудно, а детям и внукам нашим подобное строительство может оказаться необходимым и столь же привычным, как для нас сегодня сооружение гидростанций.
И кто знает, может быть, не так уж далек день, когда наряду с овеянной легендами индийской колонной из «чистого» железа появятся на Земле корабли с нержавеющими корпусами, не поддающиеся коррозии металлические трубы и атомные реакторы, и все это без всяких защитных покрытий. Металл убережет солнечный ветер.
Да, Луна может подарить богатства несметные. Ведь победа над коррозией сулит человечеству гораздо больше, чем если бы все лунные экспедиции установили, что на Селене есть золото. Показательно, что на одной из научных конференций в Хьюстоне американские специалисты признали: открытие советских ученых - это наиболее значительное из всего, что дала Луна на сегодня человечеству.