Лазеры
Когда рождались лазеры, Т. Мейман и А. Джаван ничтоже сумняшеся применили в своей пионерской работе плоские зеркала. Они должны были лишь изготовить их более тщательно, чем это делалось до того. Никаких расчетов они не делали, полагаясь на авторитет Таунса (может быть, они читали и статьи Прохорова). Оптический резонатор из двух плоских зеркал был простейшим способом для осуществления обратной связи, без которой не может работать оптический квантовый генератор. (В этом месте пришлось отказаться от термина «лазер», ибо он имеет и второе значение - оптический квантовый усилитель, прибор, обычно не требующий применения оптического резонатора.)
Однако с развитием лазеров «метод тыка» как иногда называют чисто эмпирический подход, оказался недостаточным. Для того чтобы понять процесс работы лазера, потребовалось выяснить особенности оптических резонаторов.
При этом сразу выяснилось, что, несмотря на размеры резонаторов, на много порядков превосходящие длину световых волн, методы геометрической оптики к ним неприменимы. А методы волновой оптики приводили к расчетам, посильным лишь электронным машинам.
Американские исследователи А. Фокс и Т. Ли первыми взялись за исследование оптического резонатора. Они отлично понимали, что расчеты оптического интерферометра Фабри-Перо, по существу не отличающегося от резонатора лазера, здесь непригодны. Дело в том, что применение интерферометра Фабри-Перо в классической оптике предусматривает освещение его извне световыми волнами, плоские фронты которых падают на интерферометр параллельно его зеркалам. В ннтерферометре возникает система стоячих плоских волн. Кроме того, в оптических интерферометрах поперечные размеры зеркал обычно превосходят расстояние между ними.
В лазере ситуация полностью меняется. Энергия не поступает в его резонатор-интерферометр извне. Она выделяется внутри его. Причем процесс самовозбуждения лазера состоит в том, что случайно возникшая в нем слабая волна постепенно усиливается внутри резонатора в результате многочисленных пробегов от одного зеркала к другому и обратно. А расстояние между зеркалами много больше, чем их размеры.
Фокс и Ли задались целью проследить за тем, что происходит со световой волной, бегающей между зеркалами. Для упрощения задачи они отказались на этой стадии от рассмотрения самой активной среды лазера и считали зеркала идеальными, то есть отражающими свет без потерь.
Замечательно, насколько постановка задачи Фокса и Ли совпадает со старым подходом Гюйгенса: между зеркалами бегает световой импульс, волновая сущность света отступает на второй план. Естественно, что их расчет основан на простейшей математической формулировке принципа Гюйгенса. Дальше они применяют известный интеграл Френеля и... приходят к сложным интегральным уравнениям. Решений этих уравнений нет ни в одной книге по математике, ни в одном математическом журнале.
Живи Фокс и Ли во времена Френеля, это было бы тупиком. Но шло шестое десятилетие нашего века, и они обратились к помощи вычислительной машины. Машине предложили несколько вариантов задачи - плоские зеркала в виде круглых дисков или в виде узких полос и вогнутые зеркала с различным фокусным расстоянием. Машина IBM-704 шаг за шагом проследила за тем, как деформируется волна по мере увеличения числа проходов, и показала, что через несколько сот таких прохождений форма волны практически перестает изменяться.
Далее машина уточнила, что оптический резонатор выделяет из всего мыслимого разнообразия волн лишь определенный набор, соответствующий частотам, характерным для данного резонатора. Машина выдала свой ответ в виде численных таблиц и графиков. Но ученые мирятся с такими ответами только за неимением более удобных ответов, имеющих вид известных математических функций. Ученые привыкли к функциям в результате трехвековой тренировки, передаваемой от учителя к ученику, от поколения к поколению. Не удивительно, что они стремились найти подобное решение и для этой задачи.
Первыми нашли такое решение для одного частного случая Дж. Бонд и Дж. Гордон. Они рассмотрели вогнутые зеркала, фокусы которых совпадают. При этом принцип Гюйгеыса приводит к интегральному уравнению, решение которого известно.