НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

АТОМЫ

В начале века в физике бытовали самые разные и часто фантастические представления о строении атома. Например, Линдеман, ректор Мюнхенского университета, в 1905 году утверждал, что «...атом кислорода имеет форму кольца, а атом серы — форму лепешки». Но большинство физиков пришло к выводу, что прав Дж. Дж. Томсон: атом — это равномерно заряженный положительный шар диаметром примерно 10-8 см, внутри которого плавают отрицательные электроны (или корпёсли, как писали в русских изданиях начала века), размеры которых равны примерно 10-13 см. Сам Джи-Джи — как его называли ученики — относился к своей модели без энтузиазма.

А некоторые физики представляли себе атом совсем иначе. Одни об этом говорили вслух. Среди них были Джонстон Стоней, предполагавший еще в 1891 году, что «...электроны движутся вокруг атома, подобно спутникам планет», Жан Перрен, который в 1901 году пытался представить себе «нуклеарно-планетарную структуру атома»; японский физик Нагаока и сэр Оливер Лодж, утверждавшие в 1902 году, что «...пространства внутри атома чрезвычайно громадны по сравнению с величинами самих образующих его электрических ядрышек — иными словами, атом представляет своего рода сложную астрономическую систему, подобную кольцу Сатурна».

Другие, например Петр Николаевич Лебедев, доверяли подобные мысли только своему дневнику. В 1887 году ему казалось, что частота излучения атомов определяется частотой обращения электрона по орбите. А голос Николая Морозова был заперт в стенах Петропавловской крепости.

Но ни один сторонник идеи планетарного атома не мог объяснить главного: устойчивости системы, состоящей из положительной сердцевины и электронов, которые вокруг нее вращаются.

Действительно, на круговой орбите электрон движется ускоренно и, следовательно, по теории Максвелла — Лоренца, должен терять энергию на излучение. Зная размеры атома, легко оценить скорость движения электрона по орбите и величину центростремительного ускорения, оно равно примерно 1025 см/сек2. При таком ускорении излучение должно быть настолько интенсивным, что уже через 10-8 сек. электрон обязан упасть на положительный центр притяжения, и система «атом» прекратит свое существование.

Ничего похожего в природе не происходит: атом не только устойчив, но и восстанавливает свою структуру после разрушений, свидетельствуя в пользу модели Томсона. Однако в физике уже более двухсот лет принято правило: окончательный выбор между гипотезами вправе сделать только опыт. Такой опыт поставил в 1909 году Эрнст Резерфорд (1871 —1937) со своими «мальчиками».

Представьте себе крупного и шумного человека, который принужден сидеть в темной комнате и, глядя в микроскоп, считать на экране спинтарископа вспышки (сцинтилляции) от α-частиц. Работа изнурительная: уже через две минуты глаза устают. Ему помогают опытный исследователь Ганс Гейгер (1882—1945) и двадцатилетний лаборант Эрнст Марсден (род. 1889). Их прибор несложен: ампула с радием-С, испускающим α-частицы, диафрагма, которая выделяет из них узкий пучок и направляет его на экран из сернистого цинка, и микроскоп, через который наблюдают сцинтилляции а-частиц на экране. Место появления очередной сцинтилляции предугадать нельзя — они возникают беспорядочно, но так, что в целом на экране получается довольно резкое изображение щели диафрагмы.

Однако если на пути «α-частиц поставить металлическую фольгу, то вместо резкого изображения щели на, экране возникает размытая полоса. Эта полоса лишь немного шире изображения щели, полученного в первом случае: α-частицы отклонялись от прямого пути в среднем всего на 2 градуса. Однако несложный расчет показал: чтобы объяснить даже такие небольшие отклонения, нужно допустить, что в атомах фольги могут возникать огромные электрические поля напряженностью свыше 200 тыс. в/см.

Фольга на пути потока частиц
Фольга на пути потока частиц

В положительном шаре атома Томсона таких напряженностей быть не может. Столкновения с электронами также не в счет: ведь по сравнению с ними «α-частица, летящая со скоростью 20 км/сек, все равно что пушечное ядро рядом с горошиной. И все же пути «α-частиц искривлялись. В поисках разгадки Марсден предложил проверить: а не могут ли «α-частицы отражаться от фольги назад? С точки зрения модели Томсона, предложение совершенно бессмысленное: пушечное ядро не может отразиться от горошины. Результат был неожиданным, но вполне убедительным, хотя поверить в него было трудно: «α-частицы отражались от фольги.

Прошло два года. За это время Гейгер и Марсден сосчитали более миллиона сцинтилляций и доказали, что отражается назад примерно одна «α-частица из 8 тысяч.

Только теперь, 7 марта 1911 года, Манчестерское философское общество. — то самое, президентом которого был когда-то Джон Дальтон, — услышало доклад Резерфорда «Рассеяние α- и β-лучей и строение атома». В тот день слушатели узнали, что атом подобен солнечной системе: он состоит из ядра и электронов, которые вращаются вокруг него на расстояниях ≈ 10-8 см. Размеры ядра очень малы — всего 10-13—10-12 см, но в нем заключена практически вся масса атома. Заряд ядра положителен и по величине равен примерно половине атомного веса элемента. Сравнение с солнечной системой не случайно: диаметр солнца (1,4 • 106 км) примерно во столько же раз меньше размеров солнечной системы (6 • 109 км), во сколько диаметры ядер (≈ 10-12 см), меньше размеров атома (≈ 10-8 см).

Мы настолько привыкли к новым понятиям, что, объясняя электронику, ссылаемся на телевизор, а рассказывая о механике, приводим в пример паровоз. Поэтому сейчас нам трудно понять тогдашнее недоумение людей, по силе ума подобных Резерфорду. Действительно, для нас сейчас все так прозрачно: просто «α-частица отражается от ядер атомов. И к этой картине мы привыкаем с детства. Но чтобы нарисовать ее в первый раз, необходима была выдающаяся научная смелость, основанная на знании, добытом большим трудом. Прежде чем эта картина стала известна каждому, пришлось не только сосчитать свыше миллиона сцинтилляций: нужно было (как вспоминал в конце жизни Гейгер) «...преодолеть такие трудности, смысл которых мы сейчас даже понять не в состоянии»; нужно было сначала в течение десяти (!) лет доказывать, что «α-частицы — не что иное, как атомы гелия, потерявшие два электрона, Доказательство оказалось непростым, и Шведская академия наук хорошо понимала это, когда в 1908 году присудила Резерфорду Нобелевскую премию за исследования по химии радиоактивных веществ, в результате распада которых образуются α-частицы. Обо всем этом постепенно забыли: результат был важнее и проще, чем путь, к нему приведший.

Исследование Резерфорда
Исследование Резерфорда

Сообщение Резерфорда физики приняли сдержанно. Сам он в течение двух лет также не очень сильно настаивал на своей модели, хотя и верил в безошибочность опытов, которые к ней привели. Причина была все та же: если верить электродинамике, такая система существовать не может, поскольку по ее законам вращающийся электрон неизбежно и очень быстро упадет на ядро. Приходилось выбирать: либо электродинамика, либо планетарный атом. Физики молча выбрали первое. Молча потому, что опыты Резерфорда нельзя было ни забыть, ни опровергнуть. Физика атома зашла в тупик. И чтобы выйти из него, нужен был Нильс Бор.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru