НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  





предыдущая главасодержаниеследующая глава

Вероятные невероятности

Каменный век, бронзовый, железный - они длились тысячелетия. Век пара, кончающийся век двигателей внутреннего сгорания - тут дело пошло уже быстрее! А в последние десятилетия и вообще наблюдается какая-то чехарда из эпох: век электричества, век радио, пластмасс, кибернетики, генной инженерии...

Нет ничего удивительного, если в этой сумятице вскоре наступит век мезонов, век нейтрино, гравитонов, кварков, глюонов... Сейчас основной носитель энергии - электроны, завтра может быть водород, а что потом?

Все говорит за то, что мы, несомненно, находимся в начале новой эры, эры тончайшей техники, в которой человек будет манипулировать все более мелкими единицами, вплоть до атомных и субатомных размеров.

Такая техника еще находится в колыбели. Но несомненно, что физика высоких энергий (помянем добрым словом ускорители!), изучая крохотные расстояния и мельчайшие интервалы времени, будет источником новых идей и новых руководящих принципов, и они дадут совершенно новую технологию.

Только один пример.

Уже почти 30 лет физики штурмуют термоядерный синтез. Температуру ионов удалось довести до многих десятков миллионов градусов. Осталось повысить плотность плазмы и увеличить время ее удержания примерно в 40 раз. Специалисты обещают сделать это лет через 10 - 20.

Такой путь к термоядерному синтезу можно сравнить с лобовой атакой. А нет ли обходных путей? Есть! Катаклизм реакций ядерного синтеза с помощью мюмезонов.

Долго и сложно рассказывать, как эта довольно старая (с 1949 г.) идея постепенно прокладывала себе дорогу. Укажем лишь на ее преимущества перед "классическим термоядом".

Тут, оказывается, не нужны температуры в десятки миллионов градусов, не нужны и хитроумные магнитные поля. Мезонный реактор представляет собой просто сосуд с газом - смесью дейтерия и трития, в который впрыскиваются мезоны.

Размеры сосуда зависят от давления газа, и при давлении в десятки атмосфер диаметр реактора составит около десяти сантиметров.

Карманный реактор! На его основе можно, к примеру, сделать термоядерный автомобильный двигатель!..

Трудности "холодного термояда"? Только в том, что пока нет дешевого источника мю-мезонов. И он должен быть не только экономичным но главное компактным не то что используемые сейте гиганты-ускорители (Минимальная энергия, необходимая для получения мю- мезонов - 100 МэВ).

Мезонные реакторы строить рано, но надо помнить: все революционные идеи обычно проходят три стадии:

1. "Это сумасшедшие мечты и пустая трата времени";

2. "Собственно, это осуществимо, но стоит ли овчинка выделки?" (как раз такой этап переживает сейчас идея "холодного термояда");

3. "Я всегда утверждал и всегда буду утверждать, что это блестящая мысль!"

Трудно говорить о будущем энергетики. Ибо энергетика быстро вовлекает в свою орбиту все самые новейшие завоевания науки и техники. Скажем, почему бы основой энергетики будущего не стать... вакууму? Ведь вакуум - это отнюдь не "ничто", а, как утверждают ученые, некая динамическая субстанция с очень сложными физическими свойствами.

Удивительно, но об этом догадывался еще Аристотель. Он писал: "...Надо признать, что дело физика - рассмотреть вопрос о пустоте, существует она или нет и в каком виде существует или что она такое..."

Ему много веков спустя вторил (о эта интуиция великих умов!) Р. Декарт: "...Все пространства, которые обычно считают пустыми и в которых не чувствуется ничего, кроме воздуха, на самом деле так же наполнены, и притом той же самой материей, как и те пространства, где мы чувствуем другие тела..."

Этот перечень цитат, где прозревается грядущее научное и практическое значение вакуума, можно было бы легко продолжить, сославшись на И. Ньютона, Д. Менделеева и других ученых.

Да, корифеи науки не заблуждались: физический вакуум становится сейчас непосредственным объектом многих исследований физиков во всех концах мира.

Но прежде чем исследовать вакуум, его надо создать! И не просто откачать воздух, удалить даже следы газов, необходимо, чтобы в экспериментальной установке не было никаких реальных частиц.

Хорошо, допустим, мы "держим в руках" уголок мира, где нет ни фотонов, ни пионов, ни пи-мезонов, - словом, нет ничего. Частиц нет, но поля остались! Согласно законам квантовой механики не может быть во вселенной участка, где нет полей.

Итак, мы достигли желаемого: реальных, долгоживущих (хотя бы в масштабах микромира) частиц в физическом вакууме нет. Однако раз есть поле, пусть без частиц, то оно должно колебаться. А при этих колебаниях рождаются и тут же исчезают кванты - те самые, которых, по определению, нет.

Колеблется электромагнитное поле - рождаются и пропадают фотоны. Колеблется электронно-позитронное поле - появляются и исчезают электроны и позитроны. И вообще все виды частиц, соответствующих любым полям.

И вот физический вакуум предстал перед нами отнюдь не пустым, но заполненным частицами особого рода, неполноправными, гибнущими (исчезающими) сразу после рождения. Одновременно и существующими и нет, воистину эфемерными.

Такие квазичастицы в физике носят название виртуальных. Их в принципе вроде бы невозможно зафиксировать в вакууме. Но - опять парадокс! - эти призраки микромира, почти фантомы, тем не менее могут взаимодействовать с частицами реальными, настоящими, влиять на их поведение.

Вот оно "окошко" в вакуум, в это загадочное Нечто по имени Ничто!

Сейчас физики исследуют вакуум на современных ускорителях. В них элементарные частицы разгоняются по тоннелям, в которых создается высокий вакуум. Подобные эксперименты начаты сравнительно недавно, но уже удается заглянуть (правда, пока больше мысленно) в открывающиеся тут "дали" микромира.

Если проникнуть в глубины микромира еще дальше - на 20 порядков меньше масштабов, доступных сейчас физике высоких энергий, то там пространство-время уже имеют сложную топологическую и геометрическую "мелкозернистую" структуру с невиданными свойствами.

Плотность энергий там фантастическая: в одном кубическом микроне этой среды содержится энергии столько, что ее хватило бы на образование многих и многих триллионов галактик!

Почему же эти чудовища себя не проявляют? Потому что при таких плотностях энергии и на таких малых расстояниях гравитационные силы становятся чрезвычайно мощными: они искривляют пространство-время и как бы "запечатывают" эту энергию. Так что стороннему человеку, который наблюдает эту "мелкозернистую" структуру среды, все кажется пустым пространством, то есть вакуумом, в обычном понимании этого слова.

Квантовая теория гравитации, таким образом, утверждает, что вакуум обладает бесконечной внутренней энергией, "запертой на замок" колоссальными силами внутреннего притяжения.

"Холодный термояд", антивещество, кварки, "черные дыры", вакуум... что еще? Что готовит будущее энергетике и нам? Если, как говорится, доживем, то и увидим! Сейчас ясно лишь одно: творческие силы человека безграничны.

В этом легко убедиться. Радар, реактивный двигатель, атомный реактор, баллистические ракеты... Каждое из этих изобретений изменило наш мир. А ведь все эти замечательные новшества были созданы за какие-то шесть лет! В жаркий и стремительный период, когда гремела вторая мировая война. Стимулом к их созданию в столь рекордные сроки явилась Большая Необходимость.

Несомненно, что и энергетические трудности, стимулируя мысль ученых, изобретателей и инженеров, ускорят переход нашей цивилизации на новые, еще более высокие энергетические рубежи.

предыдущая главасодержаниеследующая глава










© Злыгостев А.С., 2001-2019
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru