НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  





предыдущая главасодержаниеследующая глава

С Земли на Луну

Оставив за собой гигантский огненный хвост, космический корабль устремился ввысь... Вот отделяется ракета-носитель... и космонавты берут курс на цель (Марс? Венеру?)...

Представим теперь себе, читатель, что мы находимся в кабине космического корабля. Первое бы, что нам бросилось в глаза, - это, видимо, мягко светящийся главный пульт управления: светло-серая приборная доска, полумесяцем огибающая всю кабину. Со множеством различных переключателей, датчиков, счетчиков, циферблатов, шкал, индикаторов и других приборов... Даже стены космической каюты усеяны сотнями разных переключателей и кнопок.

Сложное хозяйство у космонавтов! Необходимо собирать и передавать на Землю разнообразные данные. Должны быть на борту также устройства, поддерживающие в кабине тепло и уют (хотя снаружи температура может колебаться от плюс 120 до минус 150 градусов Цельрия). И все это множество приборов - питание радиоприемного и радиопередающего оборудования, приборы для научных исследований и контроля параметров самого корабля, бортовая ЭВМ и так далее - требует электроэнергии.

Где ее взять? Какой тип бортового источника энергии выбрать? Непростые вопросы! Элементарные оценки показывают: чем длительнее полет, тем (если ориентироваться, скажем, на обыкновенное химическое топливо) больший запас "горючего" должны брать с собою космонавты. Для полета к Марсу бортовые источники электрического питания (БИЭП) потребовали бы 200 тонн ракетного топлива!

Когда 4 октября 1957 года был запущен первый советский спутник, более 38 процентов его общего веса составили химические источники тока. И все же этих запасов хватило только на три недели.

Для маленьких спутников, весящих сотни граммов, требовались ватты энергии. Космические же корабли - "Восход" и "Аполлон" - с человеком на борту нуждаются в гораздо большем: в десятках киловатт, а обитаемые космические станции будут (и уже!) требовать сотни и тысячи киловатт энергии. Где ее черпать?

И вот получилось так, что всех других конкурентов обошел и стал своеобразным чемпионом топливный элемент! Жалкая пария на земле, он расцвел в космосе. Там его достоинства засверкали яркими красками.

Когда в США встал вопрос о выборе энергоустановки для космических кораблей "Джемини" - они должны были крутиться вокруг Земли в течение двух недель - все решили сравнительно простые оценки. Космический полет требовал двухсот киловатт-часов электроэнергии. Чтобы ее обеспечить, самая совершенная батарея аккумуляторов - серебряно-цинковых - должна была весить 1,5 тонны. Батарея солнечных элементов - 335 килограммов, а вот энергоустановка из водородно-кислородных топливных элементов имела расчетный вес лишь 225 килограммов. Эти цифры (в космосе каждый килограмм на учете) и склонили чашу весов в пользу топливных элементов.

Конечно, топливные элементы имели в космосе и другие преимущества: играл роль не только их малый вес. В отличие от солнечных батарей они вырабатывают электроэнергию в любое время суток, независимо от освещенности. Топливные элементы компактны, могут иметь любую геометрическую конфигурацию в соответствии с требованиями космического аппарата. Они нечувствительны к ударам, вибрации, радиации, вакууму, невесомости, выдерживают кратковременные перегрузки до 100 процентов номинальной мощности, не имеют вредных выбросов (вселенная космической кабины очень мала: ее нельзя загрязнять!), бесшумны, не дают радиопомех и излучений, действуют при температурах, близких к комнатной...


Вот так и получилось, что первое практическое применение топливные элементы нашли не на Земле, а в космосе!

Наконец-то для топливных элементов наступили славные денечки. В 1963 - 1964 годах только в США (а исследования велись во всех развитых странах мира) на топливные элементы ежегодно шли десятки миллионов долларов. Все былые преграды: дороговизна платины, чистота водорода и кислорода... - все, что мешало широкому распространению топливного элемента на Земле, теперь в космосе, когда необходимо было изготовить для дела лишь несколько образцов, стало помехой небольшой: денег не жалели!

Теперь события развивались стремительным темпом: топливные элементы побывали даже на Луне! Причем топливные элементы не только снабжали космические экипажи электроэнергией, но и буквально поили их. И в этом был большой резон.

Ежедневно космонавту нужно от 4 до 14 (в зависимости от длительности полета и гигиенического режима) литров воды. Эту потребность могут обеспечить водородно-кислородные топливные элементы, так как в них при выработке каждого киловатт-часа электроэнергии в качестве побочного продукта выделяется что-то около литра чистейшей, годной для питья воды. Нетрудно подсчитать, что при месячном полете космического экипажа экономия массы корабля за счет запасов воды будет исчисляться тоннами!

...И Армстронг, и Олдрин, и Коллинз пили воду, которая синтезировалась в топливных элементах корабля "Аполлон". Правда, на первых порах американские космонавты испытывали некоторое неудобство. Вода напоминала газировку: только вместо углекислого газа она была насыщена водородом. Это вызывало необычные и малоприятные ощущения.

Причина явления проста. В топливном элементе вода выделяется - испаряется - с той стороны, где происходит подача в элемент топлива - водорода. Естественно, пары воды смешиваются с газообразным водородом. Но в дальнейшем удалось получить воду без растворенного в ней водорода. Для улавливания в питьевой воде пузырьков газа на краны надевались специальные фильтры.

предыдущая главасодержаниеследующая глава










© Злыгостев А.С., 2001-2019
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru