Спасительный атом
Петербург столетней давности. В первом номере журнала "Природа и охота" за 1879 год читатель мог прочесть следующее: "...Все более и более возрастающая ценность, не говоря о дровах, но даже угля, озабочивает многие ученые и неученые головы. Чем в самом деле будут топить наши потомки? Не должны ли они будут погибнуть с холоду или переселиться под тропики Африки и Южной Америки и вместо дров и каменного угля довольствоваться солнечной теплотой..."
Как видим, разговоры об "энергетическом голоде" начались не вчера.
В 20-х годах нашего века было точно подсчитано: известных запасов нефти хватит не далее чем до 2000 года, угля - до 2100-го. От других источников энергии большого проку не ждали. И полагали, что где-то в конце XXI века людям придется возвратиться, так сказать, к первобытному состоянию - к волам, лошадям, к водяным и ветряным мельницам.
Если бы надвигающийся сейчас на человечество энергетический кризис дал себя почувствовать лет 40 - 50 назад, до открытия ядерной энергии, человечество, несомненно, стояло бы перед катастрофой. А человеческая культура зашла бы в тупик. Но надо отдать должное ученым. Крупнейшие из них давно осознали мощь атомного ядра.
В 1922 году в голодном и холодном Петрограде в один из январских вечеров состоялся доклад 37-летнего академика А. Ферсмана. Доклад назывался "Пути к науке будущего". Уже тогда ученый пророчески предсказывал будущее использование грандиозных запасов внутриатомной энергии. "Надо только суметь завладеть этой энергией, - говорил тогда А. Ферсман, - надо ее суметь извлечь. И что эта мысль не фантазия, а реальная возможность будущего, мы видим из того, что есть вещества, которые сами выделяют эту энергию согласно вековечным и строгим законам..."
Да, это не фантазия. Основу для оптимизма дают оценки физиков. Академик Л. Арцимович некогда писал: "Спасение приносит коэффициент 107. Он определяет отношение энергии, освобождаемой при сгорании ядерного топлива в урановом реакторе, и энергии, выделяющейся при сгорании равной по весу порции органического вещества в топке обычной тепловой электростанции".
Один грамм урана (частица размером с булавочную головку) по запасам энергии эквивалентен почти полутора тоннам высококачественного донецкого антрацита.
В 1979 году атомные станции нашей страны выработали более 50 миллиардов киловатт-часов электроэнергии. Простой подсчет показывает: чтобы получить столько энергии, требуется около 17 миллионов тонн органического топлива.
Прикинем вместимость железнодорожного вагона, и уже мелькает перед глазами череда товарных поездов, которые везут за сотни и тысячи километров уголь и мазут, чтобы не погас огонь в топках ТЭЦ и ГРЭС. Перевозки вынуждают с огромной нагрузкой работать железнодорожный транспорт. И это лишь один из доводов в пользу атомной энергетики.
В делах, связанных с мирным атомом, СССР всегда был впереди. Первая в мире АЭС мощностью в 5 мегаватт была пущена в Калужской области (город Обнинск) еще в 1954 году. Тогда впервые вспыхнули лампочки, зажженные энергией атома, и академик А. Александров (нынешний президент Академии наук СССР, директор Института атомной энергии имени И. В. Курчатова) произнес знаменитые слова поздравления.
Когда из контрольной трубки появился пар, он, обращаясь к И. Курчатову, шутя произнес: "С легким паром, Игорь Васильевич!"
Это было скромное начало. Первая атомная казалась карликом в стране исполинов энергетики традиционной.
Недавно академик А. Александров вспомнил Те дни: "...многие считали, что атомная энергетика - это в общем скорее забава ученых и инженеров и вряд ли найдет когда-либо широкое применение, вряд ли будет конкурентоспособной с энергетикой на обычном топливе - нефти, газе, угле. Теперь так не думают..."
Даже 15 лет назад мечта о "большом атоме" оставалась мечтой, хотя и Белоярская и Нововоронежская станции уже прочно стояли на земле. Они звались опытными, потому что атомные котлы и часть оборудования были экспериментальными. И работу их оценивали не столько киловатт-часами, сколько исследованием режимов эксплуатации, необходимых для создания мощных реакторов. Да и среди обслуживающего персонала было больше физиков, чем в ином научном учреждении. Но сейчас можно сказать: атомная энергетика сделала огромный рывок в будущее.
В отчете МАГАТЭ (Международное агентство по атомной энергии) опубликованы данные за 1978 год. Вот цифры, характеризующие масштабы атомной энергетики.
В 21 государстве из всех, входящих в МАГАТЭ, работают 227 атомных электростанций. Их суммарная мощность доведена до 110 тысяч мегаватт. Таким образом, мирный атом обеспечивает около 6 процентов мирового производства электроэнергии.
Несмотря на обильные запасы горючих ископаемых, СССР также бурно развивает атомную энергетику.
В донских степях вырастает "Атоммаш" - завод, олицетворяющий уровень техники и технологии XX века.
Волгодонск (Ростовская область), небольшой порт, родившийся вместе с Волго-Донским каналом и морем, числился перспективным. Прежде это был городок химиков, и химический завод, выпускающий синтетические жирные кислоты, построенный в пятидесятые годы, был самым крупным предприятием города. Но пять лет назад (декабрь 1975 года) из промерзших, развороченных котлованов, из донской земли начал подниматься будущий богатырь - "Атоммаш". И сегодня уже поднялись во весь рост могучие голубые корпуса нового завода.
Пять лет назад те, кто начинал строительство завода атомного машиностроения, реактор видели только на картинке. А в декабре 1978 года уже состоялся торжественный выпуск первой очереди "Атоммаша". Были введены в строй мощности по выпуску трех миллионов киловатт реакторного оборудования.
Чтобы понять, что это значит, достаточно сказать: мощность в 3 мегаватта равна 18 Цимлянским ГЭС или 12 Днепрогэсам! Так было введено в действие уникальное сооружение в области энергетического машиностроения, не имеющее себе равных в мире. Общее стремление атоммашевцев - дать первый действующий атомный реактор мощностью в один миллион киловатт, источник самой дешевой энергии.
Первый "миллионник" - только начало. Подобные блоки мощностью в миллион киловатт затем будут серийно выпускаться на "Атоммаше" для АЭС, которые вырастут в следующих пятилетках.
Ну а как же все-таки с энергетическим голодом? Достаточно ли велики запасы ядерного горючего?
Урана на Земле вдосталь. Если учесть возможность его экстракции (извлечения) из морской воды - его там что-то около 5 миллиардов тонн! - то этих запасов хватит на тысячелетия.
Однако сравнительно дешевого урана (месторождения, пригодные для разработок), подходящего для энергетических целей, на земном шаре на первый взгляд не так-то уж много.
Оценки дают цифру - 4 миллиона тонн приблизительно. В общем эти запасы соизмеримы, например, с нефтяными ресурсами. Нужно, однако, учесть: в хорошо отработанных и получивших ныне широкое распространение АЭС с реакторами на тепловых нейтронах (тепловые реакторы) практически лишь очень небольшая часть урана (около 1 процента) может быть использована для выработки электроэнергии. "Горит" лишь уран-235, а остальные 99 процентов (другие изотопы урана, например, уран-238) - балласт, идущий в отвал.
А можно ли использовать уран полнее, в идеале - на все 100 процентов? Новейшая наука отвечает - да!
Эта возможность - в широком применении атомных "реакторов-размножителей", работающих не на медленных, как у "старых" атомных реакторов (тепловых), а на так называемых быстрых нейтронах. В этом случае в дело идет и уран-238, и торий-232, (торий тоже может служить ядерным горючим), и другие изотопы.
В результате из килограмма природного урана можно получить в 20 - 30 раз больше энергии, чем в обычных ядерных реакторах на уране-235. А значит, можно себе позволить не только дешевый уран, но и более дорогой, который находится, например, в океанской воде, в разбавленных (бедных) рудах, в кислых горных породах. И потенциальные ресурсы атомной энергетики станут тогда примерно в 10 раз выше по сравнению с традиционной энергетикой (на органическом топливе). Но это еще не все. Реакторы на быстрых нейтронах (за рубежом их называют бридерами) переводят, оказывается, ядерное топливо из разряда невосполнимого, как уголь и нефть, в разряд практически вечных источников энергии. Попутно в процессе своей работы реактор на быстрых нейтронах перерабатывает уран-238 в плутоний-239, а торий-232 в уран-233. Таким образом, в бридерах "зола", "отходы" сами становятся горючим. А это в конечном счете означает практически неограниченное (с точки зрения современных масштабов) расширение потенциальных сырьевых ресурсов атомной энергетики. И реакторы на быстрых нейтронах - это не мечта отдаленного будущего, это наш сегодняшний и завтрашний день.
В молодом городе Шевченко, раскинувшемся на берегах седого Каспия, с 1973 года действует демонстрационный промышленный реактор БН-350. В нем быстрые нейтроны вырабатывают 125 тысяч киловатт электроэнергии и тепло для получения 80 тысяч, кубических метров опресненной воды в сутки. А 25 апреля 1980 года Леонид Ильич Брежнев поздравил всех тех, кто способствовал завершению строительства и вводу в эксплуатацию реактора БН-600 - третьего энергоблока Белоярской АЭС имени И. В. Курчатова. Крупнейший в мире (его мощность составила уже 600 тысяч киловатт) уникальный энергоблок станет у нас в стране прототипом промышленных быстрых реакторов первого поколения.