Новости Библиотека Учёные Ссылки Карта сайта О проекте


Пользовательский поиск





предыдущая главасодержаниеследующая глава

Гибридизация на уровне молекул

Создание новых живых существ оказалось не окончательным сюрпризом преподнесенным генетике вирусами. Теперь уже мало кто сомневался в генетической роли нуклеиновых кислот. Но в структурной форме ДНК, предложенной Уотсоном и Криком, еще оставались слабые места. Так, не было понятно, как развертываются двухспиральные молекулы ДНК. За счет какой энергии происходит разделение и самоудваивание молекул? Недостаточно выяснено это и сейчас. И все-таки факт, что ДНК имеет двухспиральную комплементарную структуру молекул, теперь уже ни у кого не вызывает сомнений.

Исходя из этого, английский ученый Дотти поставил перед собой цель: развернуть молекулу ДНК на две цепочки, составляющие спираль, а потом попробовать собрать ее заново. Эту трудную задачу удалось решить, используя реакцию молекул ДНК на разность температурного перепада. В результате действия определенных температур в растворе оказывались односпиральные цепочки молекул ДНК. Никакой биологической активностью такие "полумолекулы" не обладали. Однако, меняя условия опыта, можно было вновь собрать половинки в двухспиральные молекулы. Восстановившаяся таким образом нуклеиновая кислота снова обладала биологическими свойствами. Она воспроизводила в потомстве все признаки микроорганизмов, из которых была ранее выделена. Так был найден способ "разборки" и "сборки" молекул нуклеиновых кислот.

Но Дотти пошел дальше. А что, если для опытов взять ДНК от разных микроорганизмов, обладающих разными свойствами? Допустим, от микробов, невосприимчивых к пенициллину, и от микробов, невосприимчивых к стрептомицину. Поместив их ДНК в один раствор, попробовать затем разделить их на "полумолекулы", а потом собрать заново в молекулы целостные. Что произойдет? Ведь обязательно случайно какие-нибудь чужие половинки соединятся вместе. Тогда должен возникнуть организм, обладающий новыми свойствами. Он будет невосприимчив и к стрептомицину и пенициллину. Такова была идея эксперимента.

После многих трудов опыт, когда из десятков тысяч молекул нужно было выделить лишь единичные гибридные молекулы, обладающие смешанными свойствами, удался. Это был новый шаг по сравнению с работами Френкель-Конрада и Шрамма. Здесь удалось создать организмы, которые сочетают свойства двух исходных форм, используя при этом только чистую ДНК. И если Шрамм и Френкель-Конрад сумели провести гибридизацию на уровне молекул, создавая новый нуклеопротеид, то Дотти удалось из половинок молекул создать новую гибридную молекулу ДНК.

ДНК
ДНК

Так на наших глазах были сделаны первые шаги к расшифровке тайны наследственности и синтеза белка. Благодаря успехам молекулярной биологии перед наукой открылись необозримые горизонты управления наследственностью микроорганизмов, растений и животных, излечения наследственных болезней, новых методов борьбы с вредными вирусами и бактериями.

Может быть, некоторым это покажется фантастикой, но я уверен, что недалеко время, когда наука начнет создавать живые клетки ранее неизвестных растений и животных.

Вспомните, в какие глубокие тайны микромира проникли ученые всего за 70 лет, прошедших со времени открытия Ивановским первого вируса. А с каждым годом темпы развития науки нарастают. Можно смело сказать, что за последние 15 лет в области познания физико-химических основ жизни сделано больше, чем за все время развития биологии.

предыдущая главасодержаниеследующая глава




Rambler s Top100 Рейтинг@Mail.ru
© Злыгостев Алексей Сергеевич, 2001-2017
При копировании материалов активная ссылка обязательна:
http://nplit.ru 'NPLit.ru: Библиотека юного исследователя'