НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

"Так поднимаются к звездам"

Теперь делу о заблуждениях придадим конкретный вид. Попытаемся увидеть, насколько ошибочные идеи явились не просто звеньями в цепи сохранения знаний, но пунктом зарождения новых истин в те дни, когда исследователи, облокотясь на миражи и обманы (точнее, самообманы), выходили к ценным научным решениям.

В ряду громких подтверждений плодотворности заблуждения прошло одно открытие великого француза XVIII века Р. Декарта. Будучи не только математиком и естествоиспытателем, но и философом, Р. Декарт, вооружившись теорией вихревых движений материальных частиц, нарисовал картину перемещений небесных тел. Та вихревая композиция легла структурой его ошибочной теории света. Но удивительное дело: отталкиваясь от нее, он выводит вполне безошибочный закон преломления светового луча на границе двух сред. И еще удивительнее, что им найдены многоликие приложения этого закона в практике оптических инструментов.

Если уж заговорили о Декарте, то столь же ошибочной оказывалась его вера в идею "животных духов". Но сообразуясь с нею, он развернул учение о рефлексе, показавшем столь богатое содержание.

Часто происходит так, что цель, поставленная перед собой исследователем, научно безнадежна. И не только для его времени, но и, как показывает история, на будущие эпохи. Тем не менее, устремляясь к этой проигрышной цели, преследуя ее, доказывая, проводя эксперимент, ученый порой добывает вовсе не бесполезные результаты либо закладывает ценные программы.

Одно из подобных счастливых заблуждений связано с именем И. Ньютона: изобретение им зеркального телескопа, у истоков которого лежит ошибка. А дело обстояло так.

Ученый проводил известные опыты по разложению света на цвета. Наряду со стеклянными он испытывал также призмы, заполненные водой, и получил идентичный результат. Это дало основание сделать вывод, что разложение белого света на составные зависит не от материала призм, а лишь от их конфигурации.

Тут ошибка. Настаивая на ней, Ньютон стал одну за другой готовить водяные линзы, а чтобы они были прозрачнее, добавлял к воде свинцовый сахар (ацетат свинца, имеющий сладковатый привкус). Однако, поступая так, великий физик не учел одного. Добавление свинца увеличивает плотность воды настолько, что она по оптическим свойствам приближается к стеклу. Тем временем, уверовав в истинность своего вывода о зависимости свойств линзы лишь от внешней формы, Ньютон предложил вместо линз идти при изготовлении телескопа принципиально иным путем - применить зеркало. Ныне использование зеркального телескопа приобрело всеобщее распространение, но обязано это движение, как видим, ошибке.

Поучительна биография воздушного шара. В 1783 году братья Жозеф и Этьен Монгольфье из провинциального французского городка Аннон соорудили огромный шар, надеясь с помощью дыма поднять его в воздух. Наполненный дымом при сжигании соломы и шерсти (запомним эту смесь) шар, к великой радости братьев и удивлению горожан, оторвался от земли и ушел ввысь.

Подъемная сила была получена благодаря разности температур теплого дыма в шаре и окружающего холодного воздуха. Таково научное объяснение случившегося. Однако изобретатели держались на сей счет совсем иных привязанностей. По их представлениям, одновременное сжигание шерсти и соломы соединяет животное начало с растительным и образует дым, якобы обладающий... электрическими свойствами. Поскольку в ту пору сведения об электричестве были весьма шаткими, то на электричество можно было списать все.

Такова родословная таинственной подъемной силы. Здесь цель оправдала теоретически сомнительные средства. Хотя в конечном исходе получили то, к чему шли, но добились того совсем не по той статье, на которую вели расчет.

Был полный успех. Правда, он выпал не сразу. На долю Монгольфье достались и годы ожиданий, недоверия. Постепенно отношение к воздушному шару менялось. И вот запуск повторяет уже профессор Парижского университета Ж. Шарль, конечно, подводя под эксперимент научные основания. Это произошло на глазах изумленной столичной публики. О событии заговорили повсюду, а дамы высшего света начали даже шить юбки в виде воздушных шаров. Кончилось тем, что еще не гильотинированный тогда король Людовик XVI распорядился (верно, после, долгих проволочек) отпустить средства на исследования полетов. Вызвав братьев в Париж, он пожаловал им дворянский титул, на гербе которого художник записал: "Так поднимаются к звездам". Поднимались, как видим, ошибочным путем.

Ложная идея руководила И. Кеплером, когда он искал законы, управляющие движением планет. Ученый был убежден, что планеты обладают сознанием, и законы свои открыл не без доли участия этой несуразной мысли об осознанности небесными телами своих "поступков": по "умно" проложенным орбитам. Но что И. Кеплер, если века спустя вожди копенгагенской группы наделили электрон "свободой воли", чтобы объяснить странности в квантовом королевстве!

Положим, мы ведем речь об идеях, которые несли ошибочные установки, но сами по себе еще не составляли фактической основы для построения новой истины. Обратимся к ошибкам иного рода, когда научный вывод покоился на искаженных результатах измерений, на неверных экспериментах. Казалось бы, уж здесь-то ошибка ничего хорошего не обещает, наоборот. Но странное дело. Порой научное открытие, притом значительное, становится возможным только потому, что в розыск были вовлечены ложные сведения. Заявим еще решительнее: если бы исследователь располагал достоверным значением, открытия не состоялось бы.

Десятилетиями следил датский астроном XVI века Тихо де Браге за передвижением планет. Особый интерес отдал Марсу, собрав детальную информацию о его "поведении" на небесной тверди. Опираясь на эти показания, ученик Т. де Браге И. Кеплер оповестил мир о знаменитых законах, в их числе - закон об эллиптической форме планетных орбит.

Однако позднее выяснилось, что наблюдения де Браге неточны настолько, что, знай Кеплер всю правду, добытую последующей работой, все возмущения, по тем временам от науки еще сокрытые, он не смог бы выявить путь Марса в его, так сказать, "чистой" форме, то есть вывести закон.

Так что же произошло? Какова теоретико-познавательная подоплека этого события, обернувшего ошибочное и, по существу, бесполезное знание в ценную информацию? Неточности, допущенные Т. де Браге (и обусловленные уровнем наблюдательной техники его времени), как бы провели те упрощения, которые следовало провести И. Кеплеру, вообще любому, взявшемуся за этот предмет. Сии упрощения и позволили за сложными и громоздкими формулами вычисления орбиты усмотреть истинный путь перемещения планеты, отказавшись от общепринятого тогда мнения, что планеты движутся по окружностям - мнения, искажающего их законный бег. Неточность сыграла роль своего рода решета, которое, просеяв частности, спасло общее, помогло пройти через подробности и поймать существо дела.

Поучительный случай на подобную же тему имел место в творчестве К. Максвелла (вторая половина прошедшего века).

Свои знаменитые уравнения электродинамики он вырабатывал, опираясь на догадку единоутробного происхождения света и электромагнетизма. Но, вынашивая эту глубокую мысль, ученый использовал, с одной стороны, данные скорости света, измеренные еще посреди XIX столетия А. Физо, и с другой стороны - соотношения между статистическими и динамическими единицами электричества, которые были определены немецкими исследователями того же XIX века Ф. Кольраушем и В. Вебером. Однако самое интересное состояло в том, что хотя результаты А. Физо, как и немецких естествоиспытателей, ошибочны, тем не менее они удивительным образом совпали ровно настолько, чтобы можно было сделать необходимые выводы. И вот, сравнивая показания электромагнитных экспериментов Ф. Кольрауша и В. Вебера со значениями скорости света, вычисленными А. Физо, К. Максвелл и пришел к мысли, что упругость магнитной среды в воздухе подобна той, которую имеет светоносная среда, и что, следовательно, всего скорее это одна и та же среда.

Так, неверные по отдельности сведения, сложившись воедино, показали верный результат. А что, если бы К. Максвелл знал истинные значения только одного из слагаемых: скорость электромагнитных поперечных колебаний в воздухе или же скорость света? Приходится, конечно, лишь гадать, смог ли бы он тогда выдвинуть идею о единой природе света и электромагнетизма. Едва ли. Ведь расхождение было бы налицо. Во всяком случае, историографы науки усиленно в том сомневаются.

Получилось, что из ошибочных и по всем статьям бесполезных знаний выросла полезная теория. В свое время известный австрийский физик XIX века Л. Больцман так отозвался на этот интересный эпизод науки: "Гениальные уравнения Максвелла выведены неправильно, но сами они правильны. Не бог ли начертал их?" Вот и получается: верно, потому что неправильно.

Нам не хотелось бы оставить ощущение, будто описанные ситуации исключительны и несут печать случайности. Расскажем еще об одном событии, подготовившем, благодаря наличию ошибки, выдающееся открытие в науке.

В начале XIX столетия английский врач В. Праут высказал гипотезу, впоследствии блестяще подтвердившуюся, что атомы всех химических элементов образовались из атомов водорода путем их "конденсации". Фактически то была первая научная догадка о сложном строении атомов вещества. Этот вывод покоился на грубых, весьма "округло" взятых при определении атомных весов и потому ошибочных данных. Однако такие округленные сведения принесли добрую услугу, позволив В. Прауту высказать свое предположение. Будь к тому времени атомные веса измерены точнее, скажем, как того добились к середине XIX века Ж. Дюма и С. Стас, В. Прауту предстала бы иная картина химических связей. На той основе ему вряд ли удалось бы так четко увидеть закон кратных отношений.

Быть может, читатель отметит, что все это происходило в давние времена, когда наука, еще не будучи столь изощренной, могла в силу того строиться на недоразумениях и сбоях. Короче сказать, стоило бы поискать подходящие случаи в сегодняшних днях. Они есть, и об одном событии, решительно повлиявшем на ход исследований в атомном веке, сейчас поведем речь. Дело касается трансурановых элементов.

Известный итальянский физик Э. Ферми, изучая взаимодействие медленных нейтронов с различными ядрами, обнаружил, что при этом имеет место активное поглощение нейтронов, сопровождаемое ядерными превращениями. Так он дошел до урана и, работая с ним, получил ряд новых изотопов, то есть разновидностей этого же элемента, различающихся лишь массой атомов. Однако ученый посчитал, что перед ним не изотопы, а новые, так называемые трансурановые (то есть располагающиеся за ураном) элементы, доселе неизвестные. Это обернулось ошибкой. Последовавшие события показали, что Э. Ферми наблюдал не трансурановое семейство, а нечто иное. Но было уже поздно: статья ушла в печать и - не в пример нашей сегодняшней издательской норме - быстро получила огласку, приковав внимание ученого мира.

Э. Ферми глубоко переживал ошибку и до конца так и не мог простить себе оплошность. Однако поистине ошибки великого гениальны. По следам Э. Ферми многие физики повели интенсивные наблюдения, проверки, что же он в конечном счете видел. Эти и другие исследования показали, что захват нейтрона ураном действительно приводит к образованию нового элемента - нептуния, нептуний превращается в плутоний, и так далее. То есть налицо трансурановый ряд. Затем последовали новые работы в области атомного ядра, и наконец О. Ган и Ф. Штрасман открыли его деление. Так ошибка определила интерес, показала район поисков и в общем-то невольно повлекла за собой большие открытия. Не соверши Э. Ферми того неверного шага, "правильный" ход вещей, безусловно, все равно привел бы физику к трансурановому ряду, да только на известное время позднее.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru