НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Слово из словаря

Прежде всего узнаем, что буквально означает слово "волна". Вернее, что означало оно в те времена, когда наука еще не занимала в жизни людей столь важного места, как сейчас. Сделать это нетрудно. Стоит лишь раскрыть "Толковый словарь живого великорусского языка" Владимира Даля, изданный впервые примерно сто лет назад.

"Волна", - говорится там, - водяной гребень, гряда, долгий бугор, поднявшийся при всколыхании вод ветром или иною силою".

Но понял ли Даль, этот великий русский знаток языка, такую фразу: "Говорит Москва! Работают радиостанции на волнах 1700, 350 и 4,52 метра"? Нет, не понял бы. Потому что в данном случае это слово используется в совершенно ином смысле - в том, который вложили в него физики.

Хотя, надо сказать, они не случайно выбрали именно его.

Первым видом волнового движения, которое пришлось наблюдать и исследовать ученым, было движедие волн на поверхности воды - таких, которые возникают и разбегаются по ее спокойной глади от брошенного камня или от плеснувшей рыбы. Хотя волны на поверхности воды были первыми, которые наблюдали ученые, по мере изучения всех прочих видов волн оказалось, что эти волны обладают целым рядом особенностей. Но все же с примера поверхностных волн, который приводится почти во всех учебниках по оптике, легче всего начать разговор о других видах волн.

Такие волны расходятся кругами. Скорость их движения постоянна и одинакова для всех идущих друг за другом гребней; каждый последующий отстает от предыдущего на одинаковое расстояние. Расстояние между двумя соседними гребнями (или между впадинами) называется длиной волны, хотя, может, было бы лучше, если бы его, по аналогии с винтовой резьбой, назвали шагом волны. Заметьте, что и слово "длина" здесь употребляется в не совсем привычном нам смысле; обычно она измеряется вдоль чего-то, а в данном случае - поперек.

Если на пути волн окажется любой легкий предмет - поплавок или щепка, - они не поплывут вслед за волнами, а останутся на прежнем месте.

Но это не значит, что предметы вообще будут неподвижными. Они приподнимутся на гребне, опустятся во впадину, снова поднимутся и снова опустятся. Значит, волна все-таки заставляет их двигаться. Но это движение совсем не совпадает с направлением распространения волн - оно оказывается поперечным, перпендикулярным ему.

Но почему же тогда речное течение всегда сносит любые плавучие тела? Не противоречит ли это тому, что было сказано о волнах? Нисколько. Из этого можно сделать лишь один вывод: волны и течение - явления совершенно различные. В реке нас сносит течением воды, то есть движением всей массы воды, направленным в одну сторону. Когда же по воде идет волна, то каждая капля воды, каждая молекула не следует за ней. Они остаются на месте и только опускаются и поднимаются, подобно поплавку, совершая поперечные колебания.

Однако, наблюдая волны, мы определенно видим движение. Что же в таком случае движется?

Ответ, к сожалению, совсем не простой и довольно неожиданный. Пожалуй, сперва его следует лишь запомнить, как запоминают новый, непривычный факт, привыкнуть к нему, не особенно вдаваясь в объяснения.

Обычно, говоря о движении, мы обязательно представляем себе нечто перемещающееся: едущий автомобиль, летящий самолет, плывущий корабль, катящийся шар, идущего человека и так далее. Вся наша повседневная жизнь, весь опыт приучают нас именно к такому пониманию этого слова. Без привычки мы не можем понять и, тем более, представить себе такую форму движения, которая не сопровождалась бы соответствующим перемещением какого-либо тела.

Но распространение волны как раз и является таким движением, которое отличается от привычных и понятных нам видов.

При распространении волны в воде (или в других средах) следует различать два вида движений. Так, наблюдая волны на поверхности воды, мы видим гребни и впадины, расходящиеся кругами. Это движутся волны. Они распространяются от источника колебаний во все стороны с равной скоростью. Движение волны совсем не похоже на связанное с ним движение частиц воды. Последние тоже движутся, но лишь вверх и вниз. Каждая частица, каждая молекула колеблется относительно того положения, в котором она находилась до возникновения волн, а не перемещается совместно с волной. Именно поэтому поплавок остается на месте и совершает только колебательные движения, поднимаясь и опускаясь на волнах. Таким образом, наблюдаемое движение волн не является переносом, перемещением каких-либо тел из одной точки пространства в другую. Перемещается только состояние среды. То движение, которое мы наблюдаем как непрерывное расширение кругов на воде, есть всего лишь колебание молекул, ее составляющих, передающееся от одной к другой в том направлении, в котором мы видим движение волн.

Камень, брошенный в воду, действует на те молекулы, которые находились в месте его падения; он придает им некоторую скорость, сообщает некоторую энергию. Между молекулами воды существует довольно сильное сцепление. Поэтому молекулы, сдвинутые упавшим камнем, потянут за собой соседние; те, в свою очередь, снова передадут смещение, и таким образом смещение будет распространяться все дальше и дальше.

То есть по направлению распространения волн движется не что иное, как смещение, движется энергия. Скорость передачи этой энергии, иными словами - скорость распространения волны в воде (или в какой-нибудь другой среде), зависит от целого ряда факторов и, в частности, от свойств среды, в которой распространяются волны.

Возьмем обычный звонок, снимем с него звонкую металлическую чашечку, по которой стучит боёк, и установим его так, чтобы боёк касался воды. Когда мы включим ток, боёк начнет вибрировать. Его колебания передадутся молекулам воды, и по ней кругами пойдут волны. Мы уже отмечали, что скорость движения волн неизменна и одинакова для всех идущих друг за другом гребней; каждый последующий отстает от предыдущего на неизменное и одинаковое расстояние, равное длине волны.

Предположим, что в начале боёк звонка делал пять колебаний в секунду. Затем, изменив натяжение возвратной пружины, значительно увеличим частоту колебаний бойка. Волны появятся и в этом случае. Но мы увидим, что их как бы стало больше, они стали чаще. Если бы мы сумели измерить длину волны, то увидели бы, что она во втором случае укоротилась.

Из этого опыта мы можем вывести очень важное заключение: длина волны тем меньше, чем выше частота колебаний.

Математически связь между длиной волны, частотой колебаний и скоростью распространения очень проста. Вот она:

длина волны = скорость распространения/частота колебаний источника волн,

λ=ν/f

где λ - это длина волны; f - частота колебаний, то есть количество колебаний в секунду, совершаемых источником волн; ν - скорость распространения волны.

До сих пор все опыты и рассуждения касались только волн, видимых на поверхности воды. Теперь посмотрим, какую форму будут иметь волны, если источник колебаний поместить глубоко под водой.

Для этого следует провести наш опыт со звонком уже не в ванне или на пруду, а в море, вдали от берегов, опустив звонок на глубину хотя бы в несколько десятков метров. В этом случае распространению волн не смогут мешать и препятствовать ни борта ванны, ни дно, ни берега. После того как звонок будет включен, в толще воды возникнут волны. Они будут распространяться от звонка во все стороны, подобно тому как распространяется свет от солнца. И, поскольку скорость во всех направлениях будет одинакова, все молекулы, имеющие одинаковое смещение, в каждый момент времени будут находиться на одинаковом расстоянии от звонка, окружая его со всех сторон. Иными словами, все эти молекулы в каждый момент времени образуют шаровую поверхность.

Радиус этой поверхности непрерывно увеличивается, причем скорость его увеличения равна скорости распространения волн. Но так как колебания повторяются вновь и вновь, такой же самый сдвиг молекул будет повторяться опять в том же самом месте, каждый раз, когда к нему будут приходить следующие волны, волны от следующих колебаний.

Волны, о которых говорилось до сих пор, все-таки походили на настоящие. Но физики знают и другие виды волн. Распространение звука в воздухе - это тоже волновой процесс. Радиосвязь осуществляется посредством радиоволн, электромагнитных волн. Об их длинах и сообщает нам диктор, начиная передачу.

Радиоволны уж совсем непохожи на "водяные гребни", на "долгие бугры". Более того, они способны распространяться в пустоте. И в этом случае они могут распространяться даже дальше, чем в любой другой среде.

Шаровые (сферические) волны в толще воды (изображены в разрезе)
Шаровые (сферические) волны в толще воды (изображены в разрезе)

Не так давно этот факт казался непостижимым даже самим физикам. Они не могли представить себе, каким образом волна может распространяться в пустоте. Ведь всегда считалось (и математика подтверждала это), что волна - это процесс передачи от частицы к частице, которые обязательно должны быть связаны между собой какой-либо силой взаимодействия.

В понимании ученых прошлого волны могли распространяться лишь в какой-либо среде. Существование их в пустоте было равносильно "ничему", распространяющемуся в "ничем". Они еще слишком мало знали, чтобы объяснить подобный парадокс, и, естественно, не могли принять такую точку зрения.

Но, поскольку волны подобного рода им приходилось наблюдать в действительности, они вынуждены были как-то объяснять это явление.

Для этого физикам пришлось отказаться от понятия абсолютной пустоты. Они вынуждены были предположить, что всюду и везде присутствует некая таинственная и вездесущая субстанция, некий тончайший газ "эфир", обладающий целым рядом необычайных свойств. В те времена ученые, знавшие еще слишком мало, вообще склонны были объяснять самые различные физические явления наличием разных неуловимых субстанций.

Гипотезу о существовании эфира впервые предложил Гюйгенс. Гипотеза эта понадобилась ему для объяснения свойств другой физической реальности - света. Потому что, в отличие от Ньютона, Гюйгенс считал, что свет имеет волновую природу.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru