НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Попробуем нырнуть

В сравнении с темпами освоения космоса изучение океана не впечатляет. Несмотря на давность морских исследований, акванавты еще не перешагнули одиннадцатикилометровый рубеж, а до предельных глубин хотя и осталось сравнительно немного, чуть больше ста метров, покорить их, видимо, будет значительно труднее, чем десятки или сотни километров в космосе. Изучение океана связано с серьезными трудностями. Даже измерение температуры больших глубин или взятие оттуда проб воды является дорогостоящим и сложным делом, требующим много времени и труда.

Особенно сложно в одной и той же точке океанской бездны произвести несколько повторных измерений. Представьте себе, как трудно встать на якорь, если под килем несколько километров воды. Для этого необходим сверхпрочный конический трос, иначе он не только судна не удержит, но не выдержит даже собственной тяжести и оборвется. Толщина начальной части такого каната, в зависимости от предполагаемой глубины погружения, колеблется от 13 до 15 миллиметров, но по мере погружения она увеличивается до 16-19. Чтобы процедура не заняла слишком много времени, используют тяжелый якорь весом около двух тонн. Свободно падая на дно, он тянет за собой трос. Скорость падения - около 20 километров. На глубине 5 километров он окажется лишь через 15-16 минут. Тяжесть вытравленного троса чудовищна. Обратно якорь не поднимают. Исследовательские суда не имеют мощных лебедок, способных справиться с такой работой. С потерей дорогостоящего троса приходится мириться.

Мировой океан представляет собою хранилище холодной воды, прикрытое сверху, да и то не везде, чуть-чуть более теплым слоем. Его объем совсем невелик. Вода теплее 10 градусов составляет всего 8 процентов общих запасов Мирового океана. Этот верхний слой, в самых мощных участках толщиной не более 100 метров, на значительной части поверхности океана подвержен сезонным колебаниям. Под ним на больших глубинах температура практически постоянна. У 75 процентов океанской воды она находится в пределах от 0 до 4 градусов.

Наиболее стабильна температура поверхности океана в его экваториальной зоне. В этих районах она лежит где-то в пределах между 20 и 30 градусами. Солнце здесь в любое время года приносит примерно равное количество тепла, а ветер систематически перемешивает воду. Поэтому она круглосуточно сохраняет постоянную температуру. Максимально высокие температуры открытого океана лежат в зоне между 5 и 10 градусами северной широты. В заливах, даже в обширных, температура воды может быть выше. Летом в Персидском заливе она поднимается до 33 градусов. Солнце на экваторе благодаря ветровому перемешиванию прогревает воду до глубины 50-100 метров. А в районах, откуда течения не уносят прогретую воду и не разбавляют ее холодной, слой теплой воды может достигать 250 метров.

Вторая зона стабильной температуры поверхностных вод находится в приполярных областях. Здесь летом она может подниматься до 10 градусов, а зимой опускаться до 5-0 или даже до минус 2 градусов. Самым холодным районом океана считается море Уэдделла.

Наиболее значительные сезонные колебания температуры воды в зоне умеренного климата, но размах суточных колебаний обычно не превышает 0,5 градуса. Лишь в ясную солнечную погоду в разгар лета он может достичь 2 градусов. Суточные колебания ограничиваются совсем тонким поверхностным слоем океана.

Океанские глубины более постоянны. Их почти не касаются сезонные колебания температуры. В тропиках под слоем теплой воды находится не очень широкая зона, толщиной 300-400 метров, где температура по мере увеличения глубины быстро падает. Область быстрого падения температуры называют термоклином. Здесь на протяжении 10 метров температура понижается примерно на 1 градус. В следующем слое толщиной в 1-1,5 километра дальнейшее снижение температуры резко замедляется. У его нижней границы она не превышает +2 - -3 градусов. В более глубоких слоях падение температуры продолжается, но происходит еще медленнее. Это зона с однородной температурой, совершенно не подверженная внешним влияниям. В придонном слое глубоких впадин и над другими участками дна температура воды вновь повышается. Это результат воздействия тепла земной коры. Кроме того, дальнейшему падению температуры больших глубин должно препятствовать существующее там чудовищное давление. Поэтому вода полярных районов, охлажденная у поверхности, опустившись на глубину 5 километров, где давление увеличивается в 500 раз, будет иметь температуру на 0,5 градуса выше первоначальной.

Очень важной характеристикой воды является ее плотность. Она зависит от температуры, солености и давления, иными словами, от того, на какой глубине находится. Вот какова плотность воды при разных значениях этих показателей:

у пресной воды при температуре +20° - 1,0 г/см3;

у обычной морской воды при температуре +20° - 1,025 г/см3;

при снижении температуры морской воды до +2° - 1,028 г/см3;

у морской воды на глубине 5 километров при той же температуре +2° - 1,050 г/см3.

Самая плотная вода в Южном океане вокруг Антарктиды, так как здесь она имеет самую низкую температуру, а из-за постоянного образования льда еще и обладает высокой соленостью.

В числе чрезвычайно важных свойств воды следует упомянуть, что она практически несжимаема. Коэффициент сжимаемости воды составляет всего 0,000046 на 1 бар. (Бар соответствует давлению, равному 0,98692 атмосферы.) Это значит, что при повышении давления до 500 атмосфер ее объем уменьшится всего на 2 процента. В сравнении с воздействием на биологические объекты это ничтожно мало. Если сухую трехдюймовую доску опустить на глубину 1 километр, она под воздействием существующего там давления уменьшится наполовину, а на глубине 5 километров станет не толще фанеры. Представьте себе, что стало бы с кашалотом, рискнувшим совершить полуторакилометровое погружение, если бы вода, составляющая около 70 процентов его тела, не препятствовала значительному уменьшению его объема.

Коэффициент сжатия воды представляется величиной ничтожной. Морским организмам небольшое уменьшение объема воды, входящей в состав их тел, не сулит особых неприятностей. Однако в масштабах океана эта величина достаточно значима. Если бы вода оказалась абсолютно несжимаемой и ее объем не уменьшался бы под действием собственной тяжести, уровень Мирового океана поднялся бы на 27 метров! А это значит, что перестали бы существовать такие приморские города, как Ленинград, Рига, Таллинн, Севастополь, Сухуми, Батуми и многие другие на всех континентах планеты.

Горько-соленый вкус океанской воде придают растворенные в ней химические соединения. В среднем в килограмме морской воды их содержится 34,69 грамма. Это значит, что на 98 молекул воды приходится 2 иона, образовавшихся при диссоциации растворенных в ней веществ. Океанологи выражают эту величину количеством частей растворенных в воде веществ, которое приходится на 1000 (по весу) частей воды, и обозначают символом ‰, что означает "промилле". Вблизи устьев крупных рек, в зоне ливневых дождей и интенсивного таяния льда соленость может падать до 10,0 промилле и ниже. В закрытых морях - Азовском, Балтийском и Черном, - куда несут свои воды многие европейские реки, она очень низка. Соленость Балтийского моря колеблется от 2 до 15 промилле. Особенно сильно опреснена вода в Финском заливе, куда сливает свои воды Нева. Еще недавно город Кронштадт, расположенный на острове Котлин, снабжался питьевой водой прямо из залива.

Финский залив
Финский залив

В Черном море соленость не превышает 18 промилле. Зато в придонных водах южной части Тихого океана она может достигать 34,7, а в северной части Атлантического океана 37,9. Еще выше она в Саргассовом море, так как здесь происходит сильное испарение воды. В ряде районов Средиземного и Красного морей, где испарение воды происходит весьма интенсивно, соленость нередко достигает 40,0, а в некоторых придонных участках 270,0 промилле. Это приближается к пределу растворимости поваренной соли.

Вода способна растворять чуть ли не все известные вещества. Видимо, в океане можно обнаружить все элементы, встречающиеся на Земле в естественных условиях. В настоящее время их обнаружено чуть более 70. Больше всего здесь хлора. За ним идут натрий, магний, сера, кальций, калий, бром, углерод, стронций, бор... Некоторые элементы находятся в ничтожно малых концентрациях. Все атмосферные газы тоже растворены в морской воде. Как и в воздухе, здесь больше всего азота. ^Второе и третье места занимают кислород и углекислый газ. Инертные газы присутствуют в ничтожных количествах. Есть районы, где кислород полностью отсутствует. Лишены кислорода глубины Черного моря, некоторые районы в Атлантике, у берегов Северной Каролины и Венесуэлы, и в Тихом океане в прибрежных районах Калифорнии, а также в некоторых фиордах Скандинавии. При отсутствии универсального окислителя в воде образуется сероводород. В Черном море глубже 200-метровой отметки вода насыщена сероводородом. Наконец, существуют морские растения и животные, которые выделяют угарный газ, так что и его можно обнаружить в воде океанов.

Газы хотя и находятся в воде в тех же пропорциях, что и в воздухе, однако в абсолютных цифрах их количество в равных объемах воды и атмосферного воздуха далеко не одинаково. Если в 1 литре воздуха при нормальном атмосферном давлении содержится 210 кубических сантиметров кислорода, то в 1 литре воды его может быть растворено не более 10. Одно из неприятных свойств воды состоит в том, что при повышении температуры растворимость кислорода в ней уменьшается. Максимальное количество этого газа, способное раствориться в воде при 0 градусов и нормальном атмосферном давлении, составляет всего 14,16 миллиграмма на литр. При 10 градусах оно уменьшается до 10,92, а при 30 падает до 7,35. Напомню, что в 1 литре воздуха содержится 300 миллиграммов кислорода. Падение растворимости кислорода по мере повышения температуры воды весьма неудобно для водных животных, так как в. теплой воде у них резко возрастает уровень обмена веществ и, соответственно, серьезно увеличивается потребность в кислороде. Установлено, что у рыб при повышении температуры воды на 10 градусов потребление кислорода увеличивается вдвое!

Мы - земляне, можно сказать, живем под Солнцем. Однако огромное количество организмов от первых до последних дней своей жизни существуют в условиях полной темноты. В отличие от воздушной оболочки Земли, хорошо пропускающей подавляющую часть солнечных лучей, точнее испускаемых Солнцем электромагнитных волн, вода является для них труднопреодолимым препятствием.

Не только морская, но и самая чистая пресная вода непроницаема для солнечных лучей. Более 60 процентов энергии электромагнитных волн задерживает, поглощает самый верхний, метровый слой воды. До десятиметровой глубины в лучшем случае доходит 20 процентов энергии солнечных лучей. Под стометровой толщей воды человек, в полном соответствии с известной русской поговоркой, чувствует себя как у арапа в желудке, так как сюда проникает менее 1 процента солнечных лучей.

На "пропускание" электромагнитных волн (таков не слишком литературно звучащий термин) сильнейшим образом влияет муть - взвешенные в воде твердые частички, в том числе микроорганизмы, а также пузырьки воздуха в самом верхнем слое воды. Растворенные в воде соли не ухудшают ее прозрачности. Косые солнечные лучи частично отражаются от водной поверхности, а та их часть, которая все же внедряется в толщу воды, не достигает больших глубин. Когда солнце стоит прямо над головой, его лучи проникают значительно глубже 100 метров. В районах с особенно чистой водой человек с нормальным зрением способен увидеть слабый сине-зеленый свет даже на глубине 800 метров, а чувствительные фотоэлементы свидетельствуют, что какие-то крохи энергии электромагнитных волн доходят на глубины до 1 километра.

Солнечные лучи обладают различной способностью проникать в толщу воды. Столкнувшись с водной гладью, первыми пасуют самые короткие ультрафиолетовые, а также самые длинные - инфракрасные лучи и гиганты радиоволны. Лучше всех проходят в глубь волны светового диапазона, особенно сине-зеленой части солнечного спектра длиной 465 нанометров. Р1менно они придают пейзажу и подводным обитателям зеленовато-голубой оттенок. Эту особенность окраски подводного мира добросовестно фиксирует фотоаппарат. На фотоснимках, сделанных при естественном освещении, даже песчаное дно приобретает зеленоватый или голубоватый оттенок. Наши глаза, точнее, наш мозг не столь объективны. Зная истинную окраску подводных объектов, он вносит коррективы в наше восприятие картины подводного царства.

Глаза наземных животных не годятся для подводного царства. Необходимо сфокусировать коррективы изображения окружающих предметов на воспринимающих элементах. Человеческий глаз делает это за счет преломляющей силы роговицы и хрусталика, иными словами, благодаря тому, что эти образования глаза способны изменять направление световых лучей.

Обычно световые лучи меняют направление при переходе из одной среды в другую. Величина отклонения зависит от преломляющей силы материала, в который они внедряются, и от того, под каким углом они падают на его поверхность. Однако показатели преломления роговицы почти такие же, как у обыкновенной воды. Поэтому световые лучи, попадая на роговицу ныряльщика, дерзнувшего под водой открыть глаза, не преломляются, а хрусталик без ее помощи не в состоянии сфокусировать световой поток на светочувствительных элементах сетчатки. Вот почему под водой окружающий мир расплывается, теряя свои очертания. В воде человек становится настолько дальнозорким, что практически любой предмет, как бы далеко он ни находился, оказывается для нас достаточно близким, и мы способны увидеть лишь крупные предметы, да и те выглядят расплывчатыми.

Совсем иное дело водолазы и аквалангисты, пользующиеся маской с плоским стеклом. Они в подводном мире не испытывают особых неудобств, так как их глаза непосредственно не соприкасается с водой. От нее их отделяет стекло и тонкий слой- воздуха, находящийся в маске или в шлеме водолазного скафандра. Поэтому в фокусировке изображения принимают участие и роговица и хрусталик, а изображение получается вполне отчетливым. Однако, переходя из воды в воздух, находящийся перед глазами водолаза, световые лучи преломляются, слегка отклоняясь от первоначального направления. Вот почему водолазу, работающему на грунте, все предметы кажутся на треть крупнее, чем в действительности. По тем же причинам на фотографиях, сделанных под водою с помощью фотобокса с простыми плоскими стеклами, изображение будет увеличено примерно на 30 процентов по сравнению с тем, каким бы оно выглядело при фотографировании в воздушной среде.

Если вода для электромагнитных волн - непреодолимое препятствие или, во всяком случае, плохо проницаема, то звуковые волны способны распространяться в океане на огромные расстояния. Правда, пресная вода примерно в 100 раз прозрачнее морской, но и у соленой прозрачность достаточно высока, так что дальность распространения звуков в океане значительно выше, чем в атмосфере. Нарушает прозрачность морской воды главным образом ион сульфата магния, то есть магниевой соли серной кислоты - MgSО4·7H2О, больше известной как английская соль, используемая в медицине в качестве слабительного. В морской воде сульфата немного, около 3 граммов на литр, но его влияние на звукопроницаемость велико. Кроме того, звуки рассеивает любая муть, любые взвешенные в воде частички, в том числе пузырьки воздуха и живые организмы. Рассеивание звуков в конечном итоге приводит к их ослаблению.

Не все звуковые волны способны в подводном мире покрывать большие расстояния. Коротковолновые высокочастотные колебания затухают значительно быстрее, чем длинные волны, следующие друг за другом с небольшой частотой. Таким образом, дальность распространения звука зависит не только от его силы, но и от его частоты. При ее увеличении в четыре раза скорость затухания звука возрастет в два раза. Тысячекилометровые расстояния способны пробегать, пересекая океаны из края в край, лишь волны в диапазоне от 100 до 1000 герц. (Герц соответствует одному периоду колебаний в секунду.)

Скорость звуковых волн никоим образом не зависит от их частоты. В морской воде звуки распространяются быстрее, чем в пресной, и в 4-5 раз быстрее, чем в атмосфере; в среднем со скоростью 1500 метров в секунду. Но с повышением температуры, давления и солености скорость звука в воде растет.

В однородной среде, какой бы она ни была, звуковые волны распространяются строго прямолинейно. Однако температура, давление и соленость воды в океане подвержены колебаниям. Непостоянством физических свойств объясняется изменение скорости звука при прохождении им различных горизонтов воды, что автоматически приводит к отклонению направления звуковых волн от их первоначального прямолинейного пути. Акустики называют подобное явление рефракцией. Не входя в его сущность, хочу обратить внимание на то, что звуковые волны всегда отклоняются в ту сторону, где скорость их распространения ниже. Неоднородность акустических свойств воды, вызывая рефракцию звука, приводит к возникновению двух интересных явлений, которые имеют существенное значение для обитателей океана.

Определенный характер рефракции привел к возникновению в океане постоянно существующего акустического канала, который, не прерываясь, простирается на многие тысячи километров, связывая самые отдаленные его точки. Как мы знаем, температура воды в океане с глубиной постепенно падает. В соответствии со снижением температуры происходит постепенное уменьшение скорости распространения звука, что, в свою очередь, приводит к отклонению звука в более глубинные зоны океана. Однако на определенной глубине всевозрастающее давление, наконец, компенсирует уменьшение скорости звука, связанное с понижением температуры, и дальше в более глубоких слоях воды она будет постепенно расти. Таким образом, в любых районах океана, пожалуй, кроме полярных областей, где отсутствует существенная разница температур, на определенных глубинах океана всегда оказывается слой, в котором скорость распространения звука минимальна. Он может располагаться на разных глубинах до 2000, но чаще всего находится на расстоянии 700 метров от поверхности. Этот слой воды и является звуковым каналом. В нем звук не рассеивается так широко, как обычно, а поэтому не так быстро ослабевает, как это произошло бы в полностью однородной среде.

Попав в звуковой канал, звук лишен возможности его покинуть, так как выше и ниже находятся зоны, где скорость распространения звуковых волн больше, и следовательно, при любой "попытке" выйти за пределы звуковода звуки будут отклоняться, отбрасываться назад окружающими слоями воды.

Звуковой канал обеспечивает связь между самыми отдаленными точками океана, и это имеет для его обитателей огромное значение. Одни из них благодаря наличию звуковода поддерживают связь между собою, другие с его помощью получают информацию о существенных для всего живого глобальных событиях, происходящих в океане. Звуковод создает большие удобства. У него один недостаток: малая скорость распространения звука. Взрыв глубинного заряда, произведенного у берегов Австралии, гидрофоны "услышали" даже в районе Бермудского треугольника, но, чтобы пересечь океан, звуку потребовалось почти 2,5 часа!

Второе явление, которое возникает в связи с рефракцией звука, - возникновение акустического экрана, роль которого выполняет все тот же акустический канал. Во время войны опытные командиры подводных лодок прятали свои субмарины под этим слоем воды, если он находился близко к поверхности, сквозь который был не в состоянии пройти поток локационных посылок. В настоящее время мощность гидролокаторов возросла настолько, что позволяет производить гидролокацию дна океана и всех крупных объектов, находящихся в толще воды, где бы они ни располагались. Таким образом, звуковой канал, обеспечивая морским организмам великолепные условия связи по горизонтали, создает серьезные препятствия для обмена информацией по вертикали.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru