5. Мотор сегодня
На протяжении многих лет развивался двигатель внутреннего сгорания, пока не превратился в обычный автомобильный мотор сегодняшнего дня.
Не раз, вероятно, подходил заинтересованный читатель к остановившемуся автомобилю, рассматривая застывший или работающий мотор.
Посмотрим теперь и мы, как устроен самый обычный четырёхцилиндровый четырёхтактный двигатель автомобиля. Для простоты мы помещаем рисунок одноцилиндрового двигателя в разрезе (рис. 10). Автомобильный четырёхцилиндровый мотор отличается только числом таких же цилиндров и поршней.
Все четыре цилиндра мотора расположены рядом, вертикально. Это одна чугунная отливка - так называемый блок мотора, в теле которого проделаны четыре сквозных отверстия - цилиндры, отполированные изнутри. Внутри цилиндров находятся поршни; они свободно двигаются вверх и вниз, будучи связаны через шатуны с коленчатым валом. Снизу отверстия цилиндров открыты, а сверху закрыты общей крышкой; это головка блока - глухая стенка цилиндров. Под крышкой цилиндров находится углубление - камера сгорания, куда выходят по два клапана на каждый цилиндр - для впуска горючего и для выхлопа газов; там же находится запальная свеча для подачи в цилиндр электрической искры. Внешне клапаны напоминают шляпку грибка на длинной тонкой ножке; они плотно прижимаются пружиной к своим гнёздам - отверстиям, ведущим на выхлоп или же к горючей смеси. Каждый клапан поднимается автоматически с помощью выступов на кулачковом вале, связанном зубчатой передачей с коленчатым валом мотора. Открытие клапанов происходит соответственно тому такту, который должен осуществляться в данном цилиндре.
Поршень - это самая подвижная часть двигателя. При работе мотора он мечется вверх и вниз по цилиндру несколько тысяч раз в минуту. Во время вспышки горючего температура над поршнем превышает тысячу градусов. Условия работы поршня крайне тяжелы. Поршни почти всех современных двигателей делаются из алюминия для уменьшения их веса и для лучшего отвода от них тепла. Для уменьшения износа поршня от трения о стенки цилиндров, а также для увеличения плотности между цилиндром и поршнем на последний одевают несколько пружинящих колец. Кольца плотно прижимаются к стенкам цилиндров. Со временем они хотя и стираются, однако благодаря тому, что они пружинят, всё же продолжают плотно прилегать к стенкам цилиндра.
Рис. 10. Разрез одноцилиндрового бензинового двигателя
С помощью шатунов все четыре поршня связаны с коленчатым валом. На валу сидит маховик. Усилие двигателя передаётся на колёса автомобиля через особую передачу и зубчатые шестерни.
Поршни мотора работают в такой последовательности, что на каждый полуоборот вала приходится рабочий ход одного из поршней, так что в каждый момент какой-либо из четырёх поршней толкает вал двигателя.
При работе поршень сначала опускается и засасывает через поднявшийся впускной клапан смесь паров бензина с воздухом. Затем клапан закрывается, и поднимающийся поршень сжимает горючую смесь. В последний момент сжатия в запальной свече, сделанной в виде пробки, ввинченной через головку блока в камеру сгорания, проскакивает весьма сильная электрическая искра. Она производит взрыв сжатой горючей смеси. Взрыв отбрасывает поршень вниз. Поршень через шатун поворачивает коленчатый вал, а затем вновь устремляется в цилиндр, выталкивая газы сквозь открывшийся выхлопной клапан. Всё это происходит много десятков раз в секунду.
Как же при таких скоростях регулируется открытие и закрытие клапанов, а также подача искры? Ведь достаточно хотя бы на мгновение нарушить чёткую последовательность этих операций, как двигатель перестанет работать. Однако ошибки здесь быть не может. Подъём клапанов, как мы уже говорили, производится с помощью специального кулачкового валика, который получает вращение от основного коленчатого вала мотора через зубчатые колёса. Таким образом, положение коленчатого вала точно определяет положение кулачкового валика, а тем самым и соответствующее положение клапанов во всех четырёх цилиндрах.
Такая же строгая определённость существует и в установке зажигания. Искра подаётся только в тот цилиндр, где сжимается горючая смесь. Схема электрического зажигания представлена на рисунке 11. Источником электроэнергии для зажигания служит аккумуляторная батарея. При работе мотора аккумулятор непрерывно заряжается небольшой динамомашиной. Она даёт ток, вращаясь от мотора. Но напряжение аккумулятора слишком мало. Оно равно лишь 6 - 12 вольтам и не может создать сильную искру в цилиндре. Поэтому низкое напряжение с аккумулятора подводится через особый прерыватель к катушке, создающей высокое напряжение, бобине. Бобина устроена так, что при непрерывном замыкании и размыкании подводимого к ней тока повышает напряжение его с 6 - 12 вольт до нескольких тысяч вольт. Это напряжение может давать очень сильную искру, которая и зажигает сжатую горючую смесь.
Распределяет искры по цилиндрам особый распределитель, связанный через зубчатые колёса с валом двигателя. Высокое напряжение подводится от бобины по электрическому проводу к вращающейся пластинке распределителя - ротору. Положение ротора строго определено положением коленчатого вала. Ротор подводит высокое напряжение к свече именно того цилиндра, где в данное мгновение должна проскочить искра. Вращаясь, распределитель не только передаёт искру в цилиндры к свечам зажигания, но и одновременно прерывает ток аккумулятора, подводимый к бобине, создавая тем самым высокое напряжение. Один провод от бобины идёт через распределитель к свече, второй соединяется с корпусом двигателя. Искра создаётся, как уже говорилось, в цилиндре с помощью свечи, ввинчиваемой в головку блока. Внутри этой свечи находится фарфоровая трубка - изолятор, сквозь которую проходит центральный электрод. Электрическая искра проскакивает между этим электродом и боковыми электродами (усиками), соединёнными с корпусом двигателя.
Рис. 11. Схема электрического зажигания на автомобильном двигателе
Теперь посмотрим, как поступает в цилиндр горючее.
На моторе имеется небольшой прибор - карбюратор (рис. 12). Карбюратор смешивает пары бензина с воздухом. Действие его основано на том, что при такте всасывания поршень втягивает в цилиндр воздух через особую трубу карбюратора, создавая в последнем разрежение. В этой трубе укреплена тоненькая трубочка с горючим, называемая жиклером. Горючее так подведено к жиклеру, что, доходя до самого края трубки, оно не вытекает. Но стоит только двигателю начать работать, как воздух устремится сквозь карбюратор, и воздушная струя начнёт высасывать горючее из трубки. При этом, подобно тому, как это происходит в парикмахерском пульверизаторе, струйка бензина распыляется и, превратившись в пар, смешивается с воздухом. Полученная горючая смесь попадает как раз в тот цилиндр, куда в данный момент открыт впускной клапан.
Рис. 12. Схема работы карбюратора
Изменяя с помощью особой заслонки, установленной в воздушной трубе карбюратора, количество проходящего воздуха, можно регулировать число оборотов мотора. Чем больше открыта заслонка, тем больше засосётся горючего и тем быстрее будет вращаться мотор. Управление заслонкой производится водителем с по* мощью ножной педали. Нажимая на педаль, водитель, как говорят, "даёт газ" - увеличивает или уменьшает число оборотов мотора.
Горючее поступает в карбюратор из бензобака автомобиля самотёком или же накачивается маленьким насосом в особую поплавковую камеру карбюратора. В этой камере находится поплавок, который включает или выключает поступление горючего в камеру в зависимости от его уровня. Поэтому уровень бензина в карбюраторе всегда постоянен. Именно таким путём бензин всегда поддерживается у самого края трубки-жиклера, так как она сообщается с поплавковой камерой.
Охлаждение и смазка трущихся частей двигателя - вот ещё две задачи, стоящие перед всяким двигателем внутреннего сгорания.
Мы уже говорили о том, что во время непрерывной работы двигатель сильно разогревается от вспышек горючего внутри цилиндра. Поэтому двигатель нужно охлаждать. Для этого на цилиндры одета "водяная рубашка" (рис. 13).
Рис. 13. Схема водяного охлаждения автомобильного двигателя
Что она собой представляет?
Вокруг цилиндров в самом теле блока ещё при его отливке сделаны пустоты - они-то и заполняются охлаждающей водой. Это устройство и называется "водяной рубашкой"; она облегает рабочие цилиндры мотора, отнимая от цилиндров и поршней тепло, выделяющееся при вспышках горючего. А этого тепла очень много - оно разогревает воду.
Для того чтобы вода остывала, перед мотором устанавливают другое специальное устройство - радиатор, соединённый с "водяной рубашкой". Радиатор состоит из тоненьких трубочек, которые обдуваются встречным воздухом с помощью вентилятора.
В двигателе много трущихся частей - их надо смазывать. Трутся поршни о цилиндры; трутся шарниры шатуна; трётся коленчатый вал в подшипниках. Смазка стенок цилиндра и всех подшипников осуществляется разбрызгиванием масла, находящегося в нижней части кожуха, закрывающего коленчатый вал с шатунами. Эта часть двигателя называется картером; он хорошо виден на рисунке 10. При своём движении вверх и вниз шатуны захватывают масло и разбрызгивают его. Масляная пыль оседает на трущихся частях. В других случаях масло подаётся к трущимся частям маленьким масляным насосом, который накачивает смазку через специальные отверстия в теле коленчатого вала.
Рис. 14. Схема силовой передачи автомобиля
Но вот мотор работает.
Как же его усилие передаётся колёсам автомобиля?
Между валом двигателя и колёсами автомобиля находится ряд зубчатых шестерён и специальная муфта сцепления. Эта муфта необходима для того, чтобы отсоединять работающий двигатель от колёс при переключении шестерён и при остановке автомобиля, когда двигатель его ещё продолжает работать (рис. 14).
Вал автомобильного двигателя всегда вращается только в одну сторону. Число оборотов и усиление двигателя меняется также лишь в определённых пределах. Но ведь автомобилю нужно трогаться с места, набирать скорость, а иногда двигаться назад. Всё это выполняется с помощью коробки передач (коробки скоростей), переключаемой водителем.
Коробка эта состоит из ряда зубчатых колёс, которые могут передвигаться с помощью особой рукоятки. Шестерни вступают в зацепление с зубчатыми колёсами и передают вращение мотора колёсам автомобиля. При этом число оборотов колёс в несколько раз уменьшается по сравнению с оборотами мотора. А уменьшая число передаваемых оборотов, шестерни соответственно увеличивают усилие мотора, передаваемое колёсам. Чем медленней едет автомобиль, тем большую силу он имеет на колёсах. Переключив соответствующим образом шестерни коробки передач, можно заставить колёса автомобиля вращаться и в обратную сторону. При заднем ходе автомобиля вал двигателя продолжает вращаться в ту же сторону.
Таковы устройство и работа автомобильного мотора.
Работа мотоциклетного двигателя не отличается от автомобильного. Двигатель мотоцикла имеет обычно один или два цилиндра, охлаждаемых не "водяной рубашкой", а встречным потоком воздуха. Такое охлаждение называется воздушным. Цилиндры для лучшего охлаждения имеют снаружи тонкие рёбра и располагаются не в одном блоке, а порознь. Чаще всего они установлены горизонтально, навстречу друг другу или же под углом - в виде римской цифры V. Работа клапанов, регулировка зажигания, переключение скорости производятся так же, как в двигателе автомобиля.
В заключение посмотрим, от чего зависит мощность современного двигателя внутреннего сгорания.
В первую очередь она зависит от числа цилиндров в двигателе - чем больше их, тем значительнее мощность мотора. Мощность зависит также и от размеров самого цилиндра, от объёма его. Когда говорят, что двигатель имеет объём столько-то кубических сантиметров - этим характеризуют мощность двигателя. Наконец, с увеличением числа оборотов мотора, естественно, растёт и его мощность. Есть и ещё одна величина, влияющая на мощность мотора, - это степень сжатия горючей смеси перед её зажиганием. В обычных двигателях смесь сжимают в 5 или 6 раз. Увеличение сжатия увеличивает и мощность двигателя, но не беспредельно. При степени сжатия свыше 8 - 9 горючее начинает самовоспламеняться или, как говорят, двигатель детонирует. Об этом свойстве самовоспламенения горючего мы расскажем в следующей главе.