Новости Библиотека Учёные Ссылки Карта сайта О проекте


Пользовательский поиск







предыдущая главасодержаниеследующая глава

Без вычислений не обойтись

Успех «Занимательной физики», вышедшей в свет уже несколькими изданиями, подсказывал Перельману необходимость и желательность продолжения серии подобных книг. Однако были веские причины, по которым осуществление задуманного отодвигалось на неопределенный срок. Во-первых, немало лет ушло на подготовку новых учебных пособий для школы, а эту работу Яков Исидорович считал наиважнейшей. Во-вторых, много времени и сил отнимала педагогическая деятельность. В-третьих, требовалось накопить достаточное количество материалов. И хотя папки с надписями «Арифметика», «Геометрия», «Алгебра», «Астрономия» уже давно были заведены и непрерывно пополнялись выписками и набросками, время для новой книги серии еще не приспело.

Главная трудность, смущавшая Перельмана, заключалась в том, как и в какой мере использовать математический аппарат и числовые примеры, обойтись без которых было совершенно невозможно.

Здесь Якова Исидоровича подстерегали своеобразные Сцилла и Харибда: в сочинениях популярного характера математические выкладки неизбежны, однако чрезмерное увлечение ими грозит превратить общедоступное произведение в ученый трактат. Перельману хорошо запомнились предостережения на сей счет, высказанные крупнейшими учеными. «Лекции, которые действительно научают, – писал Майкл Фарадей, – никогда не будут популярными, лекции, которые популярны, никогда не будут научать». Или: «Тяжкий жребий писать в наши дни математические книги, – утверждал Иоганн Кеплер. – Если не соблюдать надлежащей строгости в формулировках теорем, пояснениях, доказательствах и следствиях, то книгу нельзя считать математической. Если же неукоснительно соблюдать все требования строгости, то чтение книги становится весьма затруднительным».

Как обойти это, казалось, непреодолимое препятствие? Перельман решил: надо соединить обе полярности, то есть попытаться писать так, чтобы нисколько не пострадала научная безукоризненность, и при этом отлить изложение в форму занимательного повествования, превратив «опасный» математический аппарат в союзника и естественное подспорье. Иными словами, он задался труднейшей целью соединить строгость научного мышления с образностью и наглядностью изложения. И эту задачу Перельман решил блестяще! Еще обучаясь в Белостокском реальном училище, он услышал от учителя Бунимовича изречение Блэза Паскаля: «Предмет математики настолько серьезен, что не следует упускать случая делать его немного занимательным». Не упускать случая делать математику занимательной... Этим искусством Перельман владел в совершенстве.

В одной из своих книг он рассказывает о «Кодексе Юстиниана», созданном в VI веке нашей эры. В «Кодексе» был особый закон «О злодеях-математиках», запрещавший занятия этой наукой. Говоря о научно-популярных книгах, из которых многие авторы начисто удаляют математические выкладки из боязни сделать изложение сухим и отпугивающим читателей, Яков Исидорович писал: «Я не сторонник такой популяризации. Не для того мы тратим целые годы в школе на изучение математики, чтобы выбрасывать ее за борт, когда она понадобится». Перельман постоянно прививал уважение к числу, счету, особенно к большим числам, которые были характерны, например, для планов наших пятилеток (таковы его задачи о миллиардах консервных банок, поставленных одна на другую, или о миллионах тонн угля и стали). В таких случаях особенно умело привлекался парадокс, помогавший создавать интригующе интересный рассказ. Вот, к примеру, очерк об одном из математических монстров – числе 999. Как пояснить читателю, не искушенному в математике, невообразимую колоссальность этого выражения, в котором всего лишь три девятки? Не производить же вычисление, требующее огромного труда! Но зачем прибегать к такому лобовому приему, далекому от занимательности? Перельман рассуждает по-своему: «Это чудовищное число, но в нем всего лишь только три цифры. Цифра 2 только на семь единиц меньше девятки, но 222 равно лишь 16. Достаточно только начать вычисление этого цифрового великана, чтобы ощутить огромность ожидаемого результата».

Возведя 9 в 9-ю степень (что тоже требует немало времени), вы получите число 387 420 489. Но погодите, главное-то – впереди. Теперь надо возвести 9 в 387 420 489-ю степень. Придется сделать круглым счетом 400 миллионов умножений. Число это никогда никем не было вычислено, а чтобы написать его, потребуется книга в 180 000 страниц, ибо оно состоит из 370 миллионов цифр, и как называется – неизвестно.

Далее следует неожиданная оценка числового исполина: «Количество электронов во всей видимой части Вселенной ничтожно мало по сравнению с этим числовым монстром».

Вот так. Три девятки и обозримая Вселенная.

Однако читателю уготован еще один сюрприз: «У этого числового гиганта есть свой антипод – сверхлилипут: 1 / 999. И его не прочитать, и оно не имеет названия...».

Оказалось, что «сухая цифирь» может быть изложена настолько живо, что захватит читателя, побудит его не пренебрегать математическими выкладками в книгах, а, следуя им, прочнее закреплять полученные знания.

предыдущая главасодержаниеследующая глава





Rambler s Top100 Рейтинг@Mail.ru
© Злыгостев Алексей Сергеевич, 2001-2017
При копировании материалов активная ссылка обязательна:
http://nplit.ru 'NPLit.ru: Библиотека юного исследователя'