Новости Библиотека Учёные Ссылки Карта сайта О проекте


Пользовательский поиск





предыдущая главасодержаниеследующая глава

Физика в наступлении (Академик Велихов Е.)

Огромен фронт современной науки, и на всех его участках — от социологии до космологии, от молекулярной генетики до ядерной физики — ведутся интенсивные исследования, углубляется понимание законов природы и сложных общественных процессов, добываются знания, которые, как это было во все времена, делают человека более сильным. В нашей стране научные исследования и достижения науки, как нигде в мире, привлекают общественное внимание, занимают важное место в сфере человеческих интересов. Значение науки, ее связь с задачами и целями советских людей четко отражены в словах Леонида Ильича Брежнева: «...только на основе ускоренного развития науки и техники могут быть решены конечные задачи революции социальной — построено коммунистическое общество». Намечая пути развития страны в нынешней пятилетке, а также на более далекую перспективу — до 1990 года, XXVI съезд партии уделил серьезное внимание науке, отметив, что ее развитие должно быть подчинено решению экономических и социальных задач советского общества.

Рассказывает академик Евгений Павлович Велихов
Рассказывает академик Евгений Павлович Велихов

Среди названных в документах XXVI съезда КПСС важнейших научных проблем, на которых должны быть сосредоточены силы, немало прямо или косвенно связанных с успехами теоретической и экспериментальной физики. Здесь и классические теперь разделы физики — физика элементарных частиц и атомного ядра, физика твердого тела, оптика, квантовая электроника, радиофизика, — и отрасли, непосредственно развивающиеся на основе физических исследований, — ядерная энергетика, преобразование и передача энергии, микроэлектроника, вычислительная техника, — и области, использующие в какой-то мере (иногда, кстати, в значительной) достижения физики, например, биофизика, геофизика, машиностроение, космонавтика, материаловедение, комплексное использование сырья, охрана природы, агрофизика, приборостроение и многие другие.

Подобная универсальность физики, ее важная роль в развитии многих, если не всех, естественных наук и большинства областей техники есть исторически сложившаяся реальность, причем вполне объяснимая: физика исследует процессы и структуры, из которых формируется все то, что изучают и используют химия, биология, техника, природоведение. Это накладывает особую ответственность на физиков и в то же время привлекает к их работе внимание самого широкого круга специалистов, которым не просто хочется, а нужно, необходимо знать, что происходит в многочисленных областях физических наук.

Физика — наука наступающая. Трудно, пожалуй, найти такую ее область, где наблюдался бы многолетний застой, не было бы заметного продвижения. Из-за этого нельзя, конечно, в одном обзоре отметить все победы, все успехи физических наук последнего времени; можно лишь попытаться несколькими штрихами обрисовать ситуацию, сложившуюся на наиболее активных участках научного фронта. Прежде всего, видимо, нужно остановиться на физике высоких энергий. Главные ее интересы — глубинное строение материи, то есть все то, что должно ответить на интригующий вопрос: «Из чего сделан наш мир?»

Еще лет 10—15 назад представлялось, что чем глубже мы проникаем в вещество, чем детальнее видим его, так сказать, устройство, тем больше наблюдаем каких-то фрагментов, какого-то беспорядка, наблюдаем хаос, которому дали название «кипящий вакуум». Связано это с тем, что когда вы уменьшаете масштабы наблюдаемого пространства и уменьшаете масштабы времени наблюдения, а это делается с помощью все более совершенствующихся ускорителей, где частицы разгоняют до все более высоких энергий, то видите рождение все новых и новых частиц. И создается впечатление, что, углубляясь в микромир, мы видим все меньше и меньше порядка. Но в последние годы выяснилось (сначала это было установлено теоретически, а затем подтверждено в экспериментах на ускорителях), что на самом деле есть в микромире порядок и есть совершенно определенная внутренняя, очень красивая и, по существу, очень простая симметрия — симметрия, которая привела к современной кварковой модели строения элементарных частиц. И хотя сами кварки выделить и увидеть не удается — такова, видимо, природа вещей, — физики, и экспериментаторы и теоретики, работающие в этой области, достаточно уверены в их существовании. Кварковые модели являются основой стройной теории — квантовой хромодинамики, — в активе которой уже немало выводов, подтвержденных экспериментом. А это важнейший фактор, определяющий достоверность теории. Причем у квантовой хромодинамики нет пока никакой убедительной альтернативы, нет сколько-нибудь убедительной концепции, которая исходила бы из того, что вещество образовано не из кварков, а как-то иначе.

В «элементарных» частицах, состоящих из кварков, сами кварки связаны какими-то обменными процессами. Переносчики такого межкваркового взаимодействия — глюоны — еще один новый класс частиц. Причем силы, действующие между кварками, для нас совершенно непривычны — они не ослабевают с расстоянием. Именно поэтому нельзя наблюдать изолированные кварки. Если даже затратить огромную энергию, чтобы растащить пару кварков на заметное в масштабах микромира расстояние, то каждый из компонентов этой пары, каждый кварк мгновенно найдет в вакууме другой кварк и, объединившись с ним, родит элементарную частицу, в частности мезон. Экспериментаторы наблюдали подобные процессы по их конечному продукту — по ме-зонным струям.

Эти факты подтверждают достоверность кварковых моделей и свидетельствуют о том, что найдены новые «кирпичи» мироздания, что мы поднялись или, если говорить более строго, опустились еще на одну ступень в понимании конструкций микромира. Теперь мы, кроме того, с оптимизмом смотрим еще и на возможность объединения всех известных в природе сил, о чем мечтали выдающиеся физики нашего века.

Сегодня известны четыре класса сил, четыре вида физических взаимодействий: гравитационное, слабое, электромагнитное и сильное. Сейчас активно обсуждается возможность двух объединений, как говорят, сверхобъединений (гранд-объединений): возможность открытия единой природы сначала трех, а затем и всех четырех сил.

Сразу даже представить себе трудно, как много может дать четкое понимание единства всех сил природы, каким большим продвижением вперед это будет и в нашем понимании микромира, и, видимо, в управлении природными процессами, практическом их использовании. Вспомним: именно открытие единой природы электричества и магнетизма принесло человечеству такие блага, как универсальное использование электроэнергии: электрическое освещение, всевозможные электродвигатели, ставшие основой транспорта и моторизованной промышленности, а также телефон, радио, телевидение, звукозапись...

В возможности экспериментальной проверки идей великого объединения просматривается черта, характерная для всей физики, — открытие реалистичных конструктивных путей решения технических задач, которые на первый взгляд представляются неразрешимыми. Дело в том, что объединение сильного взаимодействия с электромагнитным и слабым должно наблюдаться при энергиях порядка 1015 ГэВ (миллиардов электрон-вольт), это примерно в миллион миллионов раз больше, чем энергия в самых мощных современных ускорителях. Чтобы получить энергию, необходимую для такого объединения, нужно было бы построить ускоритель длиной в световой год. А объединение названных трех сил с гравитацией должно наблюдаться при энергии еще в 10 тысяч раз большей, при 1019 ГэВ.

И вот появляются идеи проверки теории при значительно меньших энергиях. Проектируются и строятся ускорители, в которых за счет нестандартных физических и инженерных решений будут получены рекордные энергии частиц. Так, в ускорителе, который создается в Серпухове в Институте физики высоких энергий и для которого всемирно известный Серпуховской ускоритель на 70 ГэВ будет служить инжектором, энергия ускоренных частиц достигнет 3 тысяч ГэВ при огромных, но все же вполне реалистичных размерах ускорительного кольца (его диаметр равен 20 километрам). В Новосибирском институте ядерной физики, где в свое время академик Г. Будкер предложил идею и ускорения и сталкивания встречных пучков — одну из самых плодотворных в ускорительной технике, — сейчас идет работа над проектом машины, где встречные пучки формируются уже не в кольцах, а в линейных ускорителях, что позволит, в частности, избавиться от синхротронного излучения, которое ограничивает энергию частиц.

Как известно, синхротронное излучение возникает при движении электронов по ускорительному кольцу в магнитном поле, которое искривляет траекторию частиц. При этом чем выше скорость частиц, тем большая часть переданной им энергии превращается в синхротронное излучение. И может наконец наступить такой момент, когда энергия, передаваемая электронам, будет расти, а их собственная энергия почти не увеличится, то есть практически всю затрачиваемую на ускорение частиц энергию будет забирать синхротронное излучение.

Справедливости ради заметим, что этот побочный продукт, вредный для ускорения, может совершать массу полезных дел. Ведь по своей физической природе синхротронное излучение — это не что иное, как рентгеновские лучи, но только узконаправленные и значительно более мощные. В таком излучении остро нуждаются многие области науки и техники. В биологии, например, оно используется для изучения структуры белковых молекул, в машиностроении и строительстве — для дефектоскопии, в микроэлектронике — для рентгеновской литографии, позволяющей получать сверхбольшие интегральные схемы с деталями субмикронных размеров. Кстати, эти размеры уже близки к размерам атомов (в частности, атомов водорода), находящихся в сильно возбужденном состоянии, у которых электроны могут быть в десятки и сотни раз дальше от ядра, чем когда они в спокойном, невозбужденном состоянии. Так что успехи микроэлектроники свидетельствуют: недолго, видимо, просуществует разрыв между микрофизикой и макрофизикой, который, как считалось, разделяет эти огромные области.

Вернемся, однако, к нашей первой теме. Сейчас физики думают, как осуществить экспериментальную проверку идеи великого объединения обходным, так сказать, маневром, в экспериментах, не требующих гигантских энергий ускоренных частиц. В числе таких экспериментов проверка стабильности протона.

Один из выводов теории говорит, что протон не есть абсолютно стабильная частица, как это сейчас представляется, что он должен распадаться в среднем за время 1020—1030 лет. Если бы удалось обнаружить, что это действительно так, то многие важные выводы квантовой хромодинамики, касающиеся, в частности, единой природы всех взаимодействий, можно было бы считать доказанными.

Человеку непосвященному этот способ экспериментальной проверки может показаться недостойным обсуждения. Действительно, как можно проверить, распадается ли частица за 1020 лет, если возраст вселенной всего 1010 лет? Физик же понимает, что речь идет о среднем времени распада и поэтому достаточно наблюдать массу из 1020 протонов и установить, что за год один из них распался. Или наблюдать 1030 протонов и зарегистрировать 100 распадов в год. Задача эта непростая: необходимо в тоннах наблюдаемого вещества обнаружить единичные акты распада и при этом застраховаться от разного рода помех, от распадов, вызванных не внутренними процессами в протоне, а какими-либо внешними воздействиями. И все же экспериментальная проверка нестабильности протона отнесена к числу осуществимых.

На протяжении многих десятилетий, и особенно в последние годы, все более плодотворной становится связь земной физики с астрофизикой. И это вполне естественно. По мере того как астрофизика все детальнее исследует космос, мы получаем возможность в этой гигантской лаборатории проверять свои представления о природе земных вещей и, наоборот, на основе явлений, обнаруженных в далеких районах вселенной, разрабатывать фундаментальные физические теории.

Главные наши знания об устройстве и истории вселенной есть некий синтез наблюдательных данных и фундаментальных физических представлений. Например, обнаружение пульсаров — источников импульсного радиоизлучения, которое даже его открывателям долго казалось чем-то мистическим, загадочным, — после детальных наблюдений и глубокого теоретического анализа привело к модели быстровращающейся нейтронной звезды. Ее магнитное поле формирует из потоков заряженных частиц своего рода антенны, которые, вращаясь вместе со звездой, «стреляют» в наблюдателя импульсами радиоизлучения.

Открытие слабого и равномерно заполняющего всю вселенную так называемого реликтового радиоизлучения, оставшегося с древнейших времен, подтвердило правильность наших представлений о начальной стадии расширения вселенной. Уже одно то, что сегодня удается воссоздавать процессы, которые шли много миллиардов лет назад и с которых начиналось развитие вселенной, говорит о том, какой могучей силой познания стала нынешняя физика.

Примером того, насколько сильно физические исследования влияют на наши представления о вселенной, может служить определение массы нейтрино. Нейтрино с момента своего открытия (а точнее — введения; нейтрино сначала было придумано теоретиками, а затем через много лет обнаружено в эксперименте) представлялось как частица с нулевой массой покоя, хотя не было достоверных данных, что это именно так. Результаты многолетних работ, проведенных в Институте теоретической и экспериментальной физики, свидетельствуют о том, что масса покоя нейтрино не равна нулю. По предварительным данным, она составляет 20—30 эВ (электрон-вольт). Это очень малая величина, она примерно в 30—50 тысяч раз меньше, чем масса такой легкой частицы, как электрон, и в 40 миллионов раз меньше массы протона.

И вот, несмотря на такую невероятную легкость, нейтрино с массой покоя, отличной от нуля, оказалось в центре внимания астрофизиков. Подсчеты показали, что в целом ряде звездных скоплений никак не сходится динамический баланс: если, измерив скорость звездных объектов скопления, подсчитать их кинетическую энергию, то она окажется заметно больше, чем должна быть с учетом видимой массы. Иными словами, видимой массы этих объектов просто недостаточно для того, чтобы гравитационное притяжение тел, препятствующее их разлету, удерживало движущиеся объекты в их скоплении. А это значит, что в движении объектов участвует некая скрытая масса. Вполне вероятно, что ее образуют именно нейтрино — их во вселенной должно быть очень много, а их суммарная масса, возможно, значительно больше массы небесных тел, межзвездного газа, пыли и т. п. В этом последнем случае по-новому представляется и весь процесс расширения вселенной в будущем: расширение уже не может быть беспредельным, как предсказывает модель, построенная без учета скрытой массы; через какое-то время оно должно смениться обратным процессом — сжатием.

На примере астрофизики наглядно видно, как много значат в науке измерения, совершенство измерительных приборов и методов. Всю жизнь астрономы наблюдали звездный мир сквозь довольно узкое оптическое окно, прикрытое к тому же атмосферой. А за несколько последних десятилетий были созданы приборы для наблюдения неба в радиодиапазоне, в инфракрасных, ультрафиолетовых, рентгеновских и гамма-лучах; диапазон наблюдаемых частот (длин волн) по сравнению с видимым светом расширился на 12—14 порядков, то есть в тысячи миллиардов раз. Всеволновая астрономия не только дала дополнительную информацию о видимых в оптике объектах, но и показала нам объекты, которые в световом диапазоне с Земли не видны. Причем появились совершенно новые инструменты наблюдений, такие, например, как межконтинентальные радиоинтерферометры с разрешающей способностью в десятые доли угловой миллисекунды. Имея оптический прибор с таким разрешением, мы могли бы из Москвы увидеть предмет миллиметровых размеров, находящийся в Ташкенте. С помощью интерферометров высокого разрешения был, кстати, замечен далекий звездный объект, вокруг которого на расстоянии порядка 1 а. е. (астрономическая единица — расстояние от Земли до Солнца, то есть 150 миллионов километров) обнаружены водяные пары, что дает право думать об этом объекте как о некотором подобии солнечной системы.

Предложенная в Институте космических исследований методика объединения радиотелескопов в большие межконтинентальные системы давно получила мировое признание, и уже много лет лучшие инструменты разных стран в совместных экспериментах добывают ценнейшую информацию об астрофизических объектах, в том числе у самого горизонта видимой вселенной.

Серьезных успехов добилась в последние годы и гамма-астрономия. Достаточно вспомнить выполненные довольно скромными средствами работы ученых Ленинградского физико-технического института, поставивших оригинальный космический эксперимент на межпланетных станциях и получивших обширные данные о вспышках, всплесках гамма-излучений. Сейчас источники таких всплесков надежно отождествляются с нейтронными звездами, а еще совсем недавно гамма-всплески относили к таинственным явлениям вселенной.

В ближайшие несколько лет, вероятно, станет реальностью использование еще одного источника информации о событиях, происходящих в космосе, — гравитационных волн. Теория относительности утверждает, что гравитационные волны должны существовать, однако реально их еще пока никто не регистрировал. Дело в том, что изучение гравитационных волн — процесс с очень низкой эффективностью, и трудно себе представить лабораторные установки, мощность которых была бы достаточной для излучения даже очень слабых, едва уловимых гравитационных воли. Мощные генераторы гравитационных волн должны быть в космосе — эти волны появляются, в частности, при взрывах сверхновых звезд и иных космических событиях подобного масштаба. Но такие источники находятся далеко, и расчеты показывают, что гравитационное излучение, добравшееся до Земли, лишь на 10-18 — 10-19 сантиметра могут раскачать «гравитационную антенну» (гравитационная антенна — большое тело, которое под действием упавшей на него гравитационной волны начинает сравнительно медленно, с частотой в несколько килогерц, колебаться).

Регистрация механических колебаний со столь малой амплитудой может показаться нерешаемой задачей — нужно замерить размах колебаний, который в сто тысяч раз меньше атомного ядра. И здесь мы видим еще один пример типичной реакции физики на неразрешимую задачу: в Московском государственном университете создана установка, которая уже надежно регистрирует механические колебания с амплитудой около 10-17 сантиметра. Одновременно университетские физики совместно с Институтом кристаллографии ведут работу по совершенствованию гравитационных антенн; и можно надеяться, что еще одна неразрешимая задача — прием гравитационного излучения из вселенной — будет решена.

Астрофизика, физика высоких энергий, как и ряд других направлений физики, — передовые силы науки в ее наступлении на неизвестность. Эти области научных исследований закладывают фундамент наших знаний о мире, и именно поэтому их называют фундаментальными, базовыми. Главная задача фундаментальной физики — как можно более глубокое познание природы вещей, зачастую без каких-либо конкретных расчетов на практическую полезность добытой информации, без выдачи авансов технике, промышленности. Истина, глубокое понимание природы физических процессов, их закономерностей — вот бесценный продукт, добываемый фундаментальной физикой.

И в то же время опыт учит, что не бывает фундаментальных знаний, добытых без пользы, что на их основе всегда вырастают новые области прикладной физики, а затем и новые области техники, технологии, дающие человеку существенные блага, делающие его более сильным. Вспомним, например, исследования атомного ядра, которыми поначалу занимались несколько десятков ученых, пожелавших узнать, что из чего состоит. Знания, полученные в этих исследованиях, открыли человечеству принципиально новый путь к столь огромному богатству, как энергия. До становления ядерной физики человек, как и его далекий предок, был просто собирателем, он удовлетворял свои энергетические аппетиты только тем, что отпускала ему, разумеется в ограниченном количестве, природа. И лишь сейчас открываются возможности активного добывания энергии, пока используя ядерные реакции деления, а вскоре и термоядерные реакции синтеза, что должно навсегда исключить из нашего лексикона такие словосочетания, как «энергетический кризис» или «энергетический голод».

А вот другой пример. Фундаментальные исследования в области физики твердого тела сделали реальностью современную полупроводниковую микроэлектронику. На возможность создания полупроводниковых приборов изобретатели натолкнулись довольно давно. Еще в 30-е годы нижегородский радиоинженер О. Лосев создал первые полупроводниковые усилители и генераторы. О его работах был широко оповещен мир, у крупнейших радиотехнических лабораторий появилась возможность развивать полупроводниковую технику. Однако процесс этот задержался почти на два десятилетия, так как в то время не было еще фундамента для становления полупроводниковой электроники. Это стало возможным лишь после того, как были детально изучены и глубоко поняты тонкие и сложные физические процессы в твердом теле.

Сегодня, изменяя тонкими технологическими методами физические свойства микроскопических участков полупроводника и формируя таким образом невидимые глазу детали, создают интегральные электронные схемы, где в кристалле размером с клеточку арифметической тетради размещаются десятки и даже сотни тысяч сложным образом соединенных элементов. Сейчас это элементы микронных размеров, но уже идет речь о субмикронной технике. Один из движущих прогресс факторов — увеличение быстродействия электронных устройств, в частности вычислительных, ведь работать приходится со все более кратковременными сигналами. Но даже такой рекордно быстрый переносчик информации, как электрический сигнал, распространяющийся со скоростью света, начинает запаздывать, если не уменьшить расстояние, которое он должен пройти внутри элемента. Например, есть приборы, где циркулируют импульсы длительностью порядка 10—20 пикосекунд. Двигаясь со скоростью света, они за время своего существования проходят расстояние всего в 3—6 миллиметров; значит, размеры прибора должны быть еще меньше, если мы не хотим мириться с запаздыванием сигнала, соизмеримым с его длительностью.

Дальнейшее уменьшение размеров интегральных схем требует радикального обновления технологии и в то же время решения ряда серьезных, чисто физических проблем. Электроника постепенно движется к ангстремным масштабам деталей схемы, а возможно, и к молекулярным структурам, чем-то уже напоминающим структуры биологические, сохраняя при этом одно из главных своих достоинств — технологичное массовое автоматизированное производство сложнейших электронных блоков.

Из физики твердого тела выделяется сейчас важное самостоятельное направление фундаментальных и прикладных исследований — физика поверхности. Уже довольно давно изучены объемные свойства кристаллов, аморфных твердых тел, жидкостей, а сейчас мы подошли к изучению свойств, как принято говорить, чистой поверхности. В значительной мере эта возможность определилась успехами научного приборостроения. Появились приборы с разрешающей способностью порядка ангстрема, и теперь можно видеть, как на поверхности тела распределены входящие в него химические элементы. Можно, например, видеть, как та или иная молекула «садится» на поверхность катализатора, каким образом с ним соединяется; можно в деталях видеть, как происходит коррозия, как между зернами металла просачиваются те или иные вещества — и те, что разрушают металл, и те, что защищают его.

При этом обнаруживаются удивительные вещи. Выясняется, что коррозионную стойкость металла могут резко повысить ничтожные количества некоторого вещества, в сто раз меньшие, чем нужно, чтобы покрыть всю поверхность металла мономолекулярным слоем этого вещества. Есть основания полагать, что глубокое понимание процессов, происходящих на поверхности, может открыть новые возможности для многих областей техники и технологии, в том числе химической.

Еще одна область физики, которая произведет, и даже уже производит, революционные преобразования в технике, — это квантовая электроника. Ее наиболее известное детище — лазер — дает мощный и концентрированный поток электромагнитного излучения, в частности, в оптическом или инфракрасном диапазоне. Лазерный луч — переносчик энергии. И в этом своем качестве может делать много разных полезных дел: плавить или сваривать металл, закаливать его поверхность, резать, нагревать, сверлить отверстия и т. п. Однако от всех других инструментов энергетического воздействия на вещество лазерный луч отличается тем, что энергия в нем находится в особо упорядоченном состоянии, в виде когерентного (согласованного) монохромного (одночастотного) излучения. С этим связаны специфические механизмы взаимодействия лазерного луча с веществом и некоторые не воспроизводимые иными способами эффекты. Здесь хочется провести такое сравнение, может быть, не очень точное, но зато образное: воздействие лазерного луча можно сравнить с музыкой, с определенным образом упорядоченными звуковыми волнами, которые в отличие от скрежета и шума совершенно по-особому действуют на человека.

Физика в наступлении
Физика в наступлении

Направляя лазерный луч на вещество, можно изменять свойства этого вещества, например, получать новую структуру поверхности, значительно более твердую, а часто иного химического состава: за малое время, в течение которого лазерный луч расплавляет тончайший поверхностный слой, не успевают пройти процессы сегрегации, процессы разделения фаз, не успевают вырасти кристаллические зерна. Лазерной обработкой удавалось, в частности, получать поверхностный слой металла не в кристаллическом, а в стеклообразном, аморфном состоянии, а такая поверхность устойчива к коррозии, обычно распространяющейся по границам зерен.

Конструкторам и технологам многих областей, прежде всего машиностроения, еще предстоит оценить достоинства многообразных лазерных методов обработки материалов. Примерно 20 лет назад в Институте физики высоких давлений были созданы первые искусственные алмазы, и это послужило началом становления в стране промышленности искусственных алмазов, которые, в свою очередь, революционизировали металлообработку. Подобно этому сейчас пришло время создания лазерной обрабатывающей промышленности.

Лазер — прибор, родившийся в физической лаборатории, — можно смело назвать детищем квантовой механики, которая была в свое время одним из наиболее абстрактных разделов физики. На примере лазера особенно хорошо видно, как, казалось бы, абстрактные физические идеи помогают человеку создавать нужные ему приборы. Сегодня диапазон практического применения лазеров огромен — от глазной хирургии до тончайшего измерения космических расстояний, от больших телевизионных экранов до геодезии. Все области даже перечислить трудно, но о двух хочется сказать.

Первая — спектроскопия. Используя лазер с плавно изменяемой частотой (было время, когда само изменение частоты лазера считалось принципиально невозможным, первые лазеры работали на строго фиксированной частоте, которую определял тип излучающего материала), можно нащупать резонанс с энергетическими уровнями облучаемого вещества. А определив по резонансным частотам эти уровни, можно судить о том, с каким именно веществом мы встретились и в каком состоянии оно находится. Совершенство метода, развиваемого в Институте спектроскопии совместно с Ленинградским институтом ядерной физики, доведено практически до предела — удается прощупывать отдельные атомы, определять их состояние за очень короткое время, в частности, в процессе радиоактивного распада. Высокая чувствительность лазерных спектроскопов конкурирует с легендарной способностью собаки различать запахи. И есть основания считать, что такие приборы найдут разнообразное применение, например, для поиска нефти и газа и наверняка для контроля за чистотой окружающей среды.

Лазерная спектроскопия должна быть ценным инструментом для теоретической и практической химии. Дополняя, а в чем-то перекрывая другие спектроскопические методы, она сможет многое рассказать о деталях химических превращений, в частности, показать подробно, поэтапно, как протекает реакция во времени. Уже ушла в историю традиционная химия, когда что-то смешивали в колбе, изучали конечный продукт и, фантазируя, домысливали, как мог идти процесс. Теперь химик хочет знать анатомию реакции, точнее — ее физиологию, хочет знать, что, когда и как происходило на молекулярном и атомном уровне, — именно такие знания, добываемые, как правило, совершенными физическими приборами, открывают путь к созданию новых материалов и эффективных химических процессов.

Вторая область, о которой хочется сказать несколько слов, — лазерное разделение изотопов. Идея здесь, в общем, та же, что и в спектроскопии. Изменяя частоту излучения, в смеси изотопов нащупывают резонанс с атомами строго определенной массы, то есть с одним из изотопов. Затем эти атомы определенным образом помечают и отделяют от других. Разделение изотопов, в частности изотопов урана 235 и 238, было одной из самых трудных проблем зарождающейся атомной промышленности. Проблема эта решалась сложными традиционными методами, как правило, в крупных промышленных установках. Лазерные методы открыли в этой области принципиально новые возможности для выделения нужных изотопов из большого многообразия веществ. Это очень ценно в связи с большим вниманием, которое привлекают сейчас стабильные изотопы — именно стабильные, а не радиоактивные, сигнализирующие о своем присутствии непостепенным распадом, то есть не всегда уместным радиоактивным излучением. Стабильные изотопы, если научиться их получать в достаточных количествах и точно детектировать, могут заменить радиоактивные «метки» во многих областях исследований, в частности в медицине, биологии, химии. Совместными усилиями Института спектроскопии и Института атомной энергии в Грузии создана первая и пока, кажется, единственная в мире небольшая фабрика по лазерному разделению изотопов, которую наверняка со временем будут называть первенцем лазерно-изотопной индустрии.

Любой, даже самый беглый, экскурс в сферы интересов современной физики не может обойти вниманием проблемы получения и использования энергии. Вспомним, например, работы, связанные с созданием эффективных фотоэлементов, которые могли бы стать основой наиболее чистой солнечной энергетики. Долгое время КПД фотоэлементов составлял около 5 процентов, затем его подняли до 8—10. В Ленинградском физико-техническом институте созданы и разрабатываются многокомпонентные гетероструктуры, в которых этот КПД равен почти 30 процентам, а в перспективе достигнет 40. Кроме того, усилия ленинградских физиков направлены на создание фотоэлементов не из кристаллического, а из более дешевого аморфного кремния.

Все это фундаментальные работы, глубокие исследования в области физики твердого тела, но цели у них вполне конкретные — электростанции, например, в пустынных районах, где с площади в несколько квадратных километров снимается энергетический «урожай», достаточный для среднего города. Крупномасштабная солнечная энергетика многим специалистам представляется делом далекого будущего. Однако есть область, где уже сегодня широко используются солнечные электростанции, созданные на основе достижений физики полупроводников. Это установки, обеспечивающие электропитание космических аппаратов, и прежде всего долговременных орбитальных станций, телевизионных ретрансляторов, межпланетных лабораторий.

Размышляя о солнечной энергетике, мы неизбежно затрагиваем экологические аспекты потребления и производства энергии, о которых сейчас так много пишут во всем мире. Здесь, видимо, нужно выделить две главные проблемы. Одна из них состоит в определении того количества энергии, которое потребуется человечеству, и того количества, которое можно использовать без опасности для окружающей природной среды. Вторая проблема связана со способами добывания энергии, с использованием таких ее источников, которые не оказывали бы недопустимо вредного влияния на нашу среду обитания.

Вопрос о количестве потребляемой энергии на первый взгляд может показаться неуместным — какая вроде бы разница, сколько мы будем топить печей, зажигать электрических лампочек или сколько километров будут покрывать наши самолеты, поезда и автомобили? Земля находится как бы в холодильнике; она окружена ледяным космосом, и даже августовским днем температура за бортом реактивного самолета, летящего на высоте всего 10 километров, около минус 40 градусов. И сколько бы тепла ни выделяли все наши механизмы, оно ведь должно быть безболезненно поглощено бездонным космическим радиатором!

Но вот оказывается, что для планеты такого типа, как наша Земля, имеющей атмосферу, величина выделяемого тепла, которое определяется общим количеством потребляемой энергии, очень сильно влияет на тепловой режим тех самых областей, где живет и работает человек. Причем влияет не столько непосредственно, сколько через сложный усилительный механизм, главную роль в котором играет все тот же парниковый эффект. Сущность его не раз описывалась в печати, и я лишь скажу, что на поверхности Венеры в основном из-за сильного парникового эффекта температура достигает плюс 500 градусов Цельсия — для земной жизни малопривлекательная перспектива. Однако именно ее и нужно иметь в виду, развивая земную энергетику. Ведь сравнительно небольшой подъем температуры, связанный с чрезмерным производством и потреблением энергии, может привести к некоторому увеличению плотности облачного слоя, и за ним последует лавинообразное повышение температуры из-за парникового эффекта, который сам себя усиливает, повышая плотность облаков.

Если для оценок всеобщего потребления энергии пользоваться традиционными единицами измерения — калориями, джоулями или киловатт-часами, то придется оперировать очень большими и потому не очень наглядными числами — многими миллионами миллиардов и даже миллиардами миллиардов. Поэтому в мировой литературе для глобальных оценок и прогнозов часто употребляют новую единицу измерения, сокращенно обозначенную буквой Q и связанную со «старыми» единицами таким соотношением: Q — 2,5-1017 килокалорий = 1021 джоулей = 3•1014 киловатт-часов тепловой энергии. Чтобы представить то количество энергии, которое стоит за единицей Q, приведем такой пример: всего 0,3 Q тепла понадобилось бы, чтобы вскипятить все Азовское море; приблизительно столько же потребляет энергии все население планеты в год, а по прогнозам, годовое потребление энергии в 2000 году достигнет 0,8 Q; эксперты Десятой международной энергетической конференции оценили все геологические запасы угля примерно в 240 Q, запасы нефти и газа примерно в 60 Q (разведанные запасы примерно в 8—10 раз меньше); согласно оценкам тех же экспертов солнечное излучение приносит на Землю в год примерно 2000 Q.

Сопоставление приведенных данных может породить чувство полной успокоенности: мол, человечеству ни сейчас, ни в будущем не грозят неприятности типа парпикового эффекта или иные беды, связанные с перегревом планеты за счет чрезмерного производства энергии нашим индустриальным обществом.

Действительно, если сравнить потребляемую, а значит, и производимую в наше время энергию 0,3 Q в год с 2000 Q Солнца, то окажется, что человек вносит в тепловой баланс планеты всего чуть больше сотой доли процента. Величина эта вряд ли может испортить более или менее стабильно работающую природную тепловую машину.

Сегодня в развитых странах на каждого человека приходится в среднем 4—7 киловатт мощности. Эти цифры — очень важный показатель производства материальных благ, они говорят о том, насколько энергично помогают нам разного рода машины, сколько энергии потребляют фабрики и заводы, чтобы обеспечить людей обувью, одеждой, телевизорами, удобрениями для выращивания богатых урожаев и многим другим.

Можно ориентировочно прикинуть, чему равна средняя мощность самого человека, когда он, скажем, выполняет достаточно тяжелую физическую работу. Она равна примерно 2 ваттам. А средняя мощность помогающих ему машин, еще раз напомним, — 4—7 киловатт. Это значит, что на одного работающего человека приходится 2—3 тысячи тепловых, электрических, механических и иных «железных» работников.

Общее энергопотребление в ближайшие десятилетия будет расти. Но по поводу средней потребляемой мощности мнения разных экспертов сильно расходятся, что вполне объяснимо: прогнозирование этого показателя — проблема не только и даже не столько техническая, сколько социальная. Чаще других называют две возможные граничные величины, при которых произойдет стабилизация роста средней потребляемой мощности, — минимальную 10 киловатт и максимальную 20 киловатт. Причем предполагается, что такая стабилизация произойдет где-то в конце следующего столетия, когда население планеты достигнет 11 миллиардов человек. Исходя из этих прогнозов и имея в виду их условность, можно подсчитать максимальную энергию, которую будет производить человечество в конце будущего столетия, — она составит около 7Q, то есть 0,3 процента от получаемой планетой солнечной энергии. Допустима ли такая цифра? Не угрожает ли она установившемуся температурному равновесию? Не вызовет ли серьезных климатических катастроф?

Подобные вопросы в последнее время интенсивно обсуждаются, к ним приковано серьезное общественное внимание, но, судя по всему, удовлетворительного ответа пока нет. Потому что таким ответом должно быть допустимое количество энергии, которое можно производить без опасений. Причем величина эта должна быть абсолютно надежно обоснована, ошибка здесь недопустима — планета у нас одна, и с ней нельзя производить рискованные эксперименты.

Сейчас проблема пределов энергопотребления исследуется на высоком теоретическом уровне, в ее решение включились квалифицированные математики и физики, вместе с метеорологами они строят математические модели сложнейшей машины, «детали» которой Солнце, разогреваемая Солнцем и изнутри Земля, океаны и материки, льды, дожди и ветры, многослойные облачные массивы. Но если вопрос о том, сколько энергии может производить человечество, еще нужно обсуждать, то вопрос о том, каким способом должна добываться эта энергия, уже сейчас достаточно ясен. Во всяком случае, понятно, что то огромное количество энергии, которое потребуется нашей планете уже в первые десятилетия следующего века, нельзя будет получать основным применяемым ныне способом — сжигая органическое топливо, то есть уголь, газ, нефть.

Во-первых, потому, что запасы этого топлива не бесконечны, исчерпав их до конца для нужд энергетики, мы лишим химическую промышленность ценнейшего и незаменимого сырья — вспомните прекрасное образное предостережение Д. Менделеева, напоминавшего, что топить нефтью — это все равно что топить ассигнациями. Но ограниченность ресурсов еще не все — продукты сгорания органического топлива, такие, например, как окись углерода, углекислый газ, сернистый ангидрид и ряд других соединений, уходят в атмосферу, и одновременно из нее извлекается кислород.

У этого процесса есть несколько весьма неприятных последствий. Вот одно из них, многим уже знакомое по собственному опыту, — резко ухудшается состав воздуха, которым дышит человек. Недаром на улицах некоторых столиц есть автоматы, примерно такие же, какие у нас продают газированную воду. Торгуют эти автоматы чистым воздухом — опустил монету и можешь немного подышать на задымленной стадами автомобилей улице. Хирурги знают, как отличаются легкие человека, живущего на лоне природы, от легких горожанина, — у одного легочная ткань нормальная, розоватого цвета, у другого — просто-таки серая, закопченная. По поводу наших взаимоотношений с дымящей техникой очень хорошо высказался один американский метеоролог в книге с многозначительным названием «Загрязненное небо». Он сказал: «Или люди сделают так, что станет меньше дыма, или дым сделает так, что станет меньше людей».

Нисколько не умаляя значения серьезных исследований и крупномасштабных практических работ, направленных на то, чтобы уменьшить загрязнение атмосферы энергетическими установками, работающими на органическом топливе, нужно сказать, что главный источник оптимизма все-таки связан с изменением самой структуры производства энергии. Конкретно — со всевозрастающей ролью атомной энергетики.

Для начала нужно отметить, что уже освоенные процессы добывания энергии из атомного ядра — процессы, использующие деление ядер тяжелых элементов, прежде всего урана, на многие десятилетия и даже столетия обеспечены исходным сырьем. Сейчас, правда, в ядерных реакторах в основном «сжигается» лишь один из изотопов урана, уран-235, которого в природном уране сравнительно мало — всего 0,7 процента. Но уже имеется успешный опыт эксплуатации так называемых реакторов-размножителей, в частности, реакторов на быстрых нейтронах, в которых используется значительно более распространенный уран-238. Наряду с энергией эти реакторы дают другой вид ядерного «горючего», как бы размножают исходный источник энергии. Первой в мире мощной установкой на быстрых нейтронах был реактор БН-350 мощностью 150 мегаватт в городе Шевченко; сейчас в стране созданы и значительно более мощные реакторы этого класса.

Широкое освоение реакторов на быстрых нейтронах позволит использовать уже не доли процента, а примерно 30—40 процентов природного урана. Огромное значение работ этого направления видно уже по тому, что они особо отмечены в документах XXVI съезда партии.

Что же касается атомной энергетики в целом, то в конце одиннадцатой пятилетки, то есть в 1985 году, на ее долю придется 220—225 миллиардов киловатт-часов электроэнергии, почти столько же вырабатывают все гидроэлектростанции страны. А вместе эти оба вида чистой энергетики дадут почти треть всей электроэнергии, которая будет выработана в стране.

То, что атомная энергетика, так же как гидроэнергетика, названа чистым видом производства энергии, кое у кого, видимо, вызовет недоумение. К сожалению, использование энергии атомного ядра в сознании некоторых людей связано с предрассудками, скорее всего порожденными зловещим дебютом этого источника энергии в атомном оружии. Вместе с тем ядерная энергетика в действительности является чистой, во всяком случае значительно более чистой, безвредной для человека и среды его обитания, чем энергетика тепловая, основанная на сжигании угля и нефти.

Проблема безопасного захоронения радиоактивных отходов решается на высоком научном уровне, решается надежно. Попутно заметим: количество отходов, которое подлежит изолированию, сравнительно невелико. Американские физики подсчитали, что даже если вся энергия в их стране будет производиться на атомных электростанциях, то для захоронения радиоактивных отходов понадобится участок земли площадью всего в один квадратный километр. Что же касается разного рода неуправляемых утечек радиоактивных веществ, то на современных атомных электростанциях они настолько малы, что ими вполне можно пренебречь. Во всяком случае, эти утечки значительно меньше, чем выброс радиоактивных веществ, которым неизбежно сопровождается сжигание любого химического топлива. Тем, кому слово «меньше» покажется недостаточно убедительным, сообщим цифры — современная атомная электростанция выбрасывает в атмосферу в 500—1000 раз меньше радиоактивных веществ, чем тепловая электростанция такой же мощности.

Сегодня, по данным Международного агентства по атомной энергии, более чем в 20 странах мира работает почти 250 атомных электростанций, они производят почти 6 процентов всей мировой электроэнергии. Любые прогнозы развития энергетики сходятся на том, что доля атомных электростанций в энергопроизводстве будет расти. Эта тенденция отражена и в «Основных направлениях экономического и социального развития СССР на 1981—1985 годы и на период до 1990 года»: наряду с необходимостью улучшать использование топливно-энергетических ресурсов и сокращать потребление нефти и нефтепродуктов в качестве печного топлива отмечается необходимость развивать атомную энергетику опережающими темпами.

По многим прогнозам через 30—50 лет почти всю электрическую энергию, производимую на планете, будут вырабатывать именно атомные станции. Но, как писал в журнале «Коммунист» президент Академии наук А. Александров, даже такая полная «атомизация» электроэнергетики лишь на 20 процентов уменьшит потребление природного топлива, а нефти и газа — и того меньше. Поэтому «наступило время подумать и о других сферах применения атомной энергии. Выработка промышленного и отопительного тепла, включение атомной энергетики в металлургию и химическую промышленность являются задачами значительно более крупными, чем электроэнергетика. В ближайшие годы человечество, конечно, станет свидетелем проникновения ядерной энергетики в эти области».

Советские физики, занимающиеся расширением сфер использования атомной энергии, работают, в частности, над двумя крупными проблемами. Одна из них — создание реакторов, вырабатывающих тепло при температуре 800—1000 градусов, — это примерно в два раза выше, чем в типичных реакторах, используемых ныне на атомных электростанциях. Чтобы пояснить важность создания высокотемпературных реакторов, достаточно сказать, что они найдут применение в такой прогрессивной технологии, как бездоменное производство металла.

Не менее значительны работы по производству низкотемпературного тепла в ядерных реакторах. На основе этих работ создаются атомные станции теплоснабжения, сокращенно ACT, Такие станции будут использоваться для централизованного теплоснабжения крупных городов, то есть они будут отапливать жилища и предприятия, обеспечивать горячее водоснабжение.

То, что от реактора ACT нужно получать сравнительно низкую температуру, примерно 150 градусов, резко упрощает всю систему, отпадает необходимость в мощных насосах, парогенераторах, конденсаторах, работающих к тому же в контуре, связанном непосредственно с самим реактором, вся система получается исключительно простой, надежной, удобной в эксплуатации.

В нашей стране уже строятся довольно крупные ACT, в частности, в Воронеже и Горьком они будут снабжать теплом районы этих городов, имеющие по 300—400 тысяч населения. Предполагается, что уже через 10—15 лет потребление низкотемпературного тепла в стране достигнет 6 миллиардов гигакалорий; для получения такого количества тепла пришлось бы сжечь практически всю нефть, добываемую в стране в течение года. Отсюда ясно, какой огромный экономический эффект могут дать атомные станции теплоснабжения.

Все, что говорилось до сих пор об атомной энергетике, относится к получению энергии в реакциях ядерного деления. Но это не единственный способ поставить на службу человеку энергию, скрытую в недрах вещества.

Надежды на энергетическое изобилие вот уже несколько десятилетий связаны с возможностью зажечь на Земле рукотворное и надежно управляемое мини-солнце — использовать энергию, выделяющуюся при синтезе (соединении) ядер водорода в ядро гелия. Любопытно, что возможность получения энергии из этой термоядерной реакции учеными была понята на несколько лет раньше, чем возможность использования энергии, выделяемой при делении ядер урана. Но вот урановые реакторы уже много лет работают, их вклад в энергетику с каждым годом резко возрастает, а энергию синтеза водородных ядер (термоядерную энергию, термояд) пока реально использовать не удается.

История термоядерных исследований сама по себе достойна внимания, в ней можно найти немало интересного, поучительного. Увидеть, в частности, как природа последовательно ставила на пути физиков одно сложное препятствие за другим и как у исследователей находились силы и даже мужество, чтобы эти нескончаемые препятствия преодолевать.

Сейчас работы ведутся в двух основных направлениях: на установках с магнитным удержанием высокотемпературной плазмы — в «токамаках» и «стелараторах», и в так называемых инерциальных системах, где микроскопические порции горючего должны непрерывно подаваться в реактор и нагреваться до необходимых сотен миллионов градусов за счет сильнейшего сжатия с помощью мощных лазерных лучей, электронных или ионных пучков.

Естественно, что специалисты, работающие на каждом из этих направлений, лучше других видят его достоинства, и не исключено, что в будущем будут мирно сосуществовать термоядерные установки с реакторами разных типов. Но сегодня, пожалуй, больше других продвинулись к заветной цели, к самоподдерживающейся термоядерной реакции, «токамаки» — установки, родившиеся в нашей стране и ныне широко развиваемые во всем мире. В нескольких странах проектируются или уже начали создаваться достаточно большие «токамаки», в которых можно будет осуществить зажигание самоподдерживающейся термоядерной реакции не с целью получения энергии, а для начала с целью исследования этого процесса. Пока же на «токамаках» идет уточнение ряда важных деталей, идет подготовка к постройке больших реакторов.

Интересные результаты получены в Институте атомной энергии имени И. В. Курчатова на установке «Токамак-7», где впервые использованы сверхпроводящие магнитные системы.

Пуск этой установки ожидался с некоторым трепетом — очень хотелось знать, насколько устойчиво она будет работать. Оказалось, что «Токамак-7» работает устойчиво, надежно, его непрерывно эксплуатируют месяцами, включают для проведения исследований на целый день без перерывов, в то время как более ранние машины таких масштабов включались для кратковременных экспериментов на считанные секунды. За счет сверхпроводящих магнитов «Токамак-7» несравненно экономичнее своих предшественников.

Надежность установки, которую можно считать прообразом реального реактора, вселяет оптимизм, главный источник которого — полученные на «токамаках» параметры плазмы, уже близкие к тем, что должны обеспечить непрерывную реакцию с выделением энергии.

Можно предположить, что термоядерный реактор на основе «токамака» будет работать или непрерывно, или многоминутными циклами с примерно секундными перерывами для выполнения некоторых вспомогательных операций. Чтобы получить устойчивую самоподдерживающуюся реакцию, которая будет выделять больше энергии, чем потребляет установка, нужно иметь достаточно плотную водородную (точнее, дейтерий-тритиевую) плазму (то есть само термоядерное горючее) и удерживать ее длительное время без заметного снижения начальной температуры.

Сейчас на разных установках получены параметры, довольно близкие к требуемым, но добыты они раздельно, не комплексно. Если, например, температура близка к термоядерной, то при этом плотность плазмы или время сохранения нужной температуры в несколько раз меньше, чем требуется. Уже само это «в несколько раз меньше», огорчительное для человека непосвященного, говорит о заметном прогрессе физики — еще не так давно параметры плазмы в «токамаках» в сотни и даже в тысячи раз отличались от того, что нужно для самоподдерживающейся реакции.

Четыре группы исследователей сейчас создают установки, в которых они надеются зафиксировать весь необходимый комплекс параметров, — в СССР, США, Японии и в Объединении европейских стран. Совместными усилиями этих групп по инициативе Советского Союза разработан проект крупнейшего международного «токамака» «Интор», который мог бы заметно превзойти не только существующие, но и проектируемые национальные установки, сделав таким образом важный шаг от экспериментов к термоядерной электростанции.

Интенсивно развиваются и работы по исследованию инерциальных систем, где энергию предполагается получить, так сказать, в пулеметном режиме — от непрерывной очереди термоядерных микровзрывов в сильно сжимаемых микроскопических дейтерий-тритиевых мишенях, которые одна за другой поступают в реактор.

Сейчас исследуются три основные сжимающие системы для инерциальных установок — мощное лазерное излучение, интенсивные пучки электронов или ионов и сильные магнитные поля. Исторически раньше других начались работы в области лазерного термоядерного синтеза, причем здесь много интересных пионерских работ выполнено в ФИАНе — Физическом институте имени П. Н. Лебедева.

Сейчас уже можно сказать, что результаты, которые получат на инерциальных установках, будут определяться мощностью, вложенной в мишень. Судя по всему, это должна быть внушительная величина — примерно 1014 ватт, то есть сто миллионов мегаватт. Как известно, увеличить мощность можно двумя путями: повышая энергию или уменьшая время, в течение которого она действует. Сейчас на всех трех направлениях — лазеры, пучки частиц и магнитные поля — получены довольно большие мощности, но при разных соотношениях энергии и длительности импульса: в лазерных системах при сравнительно небольшой энергии и рекордно коротких импульсах, в системах с магнитным сжатием, наоборот, при большой энергии и довольно продолжительном импульсе и, наконец, в установках с пучками частиц, таких, например, как советская «Ангара-1», при некоторых промежуточных параметрах. Ведущиеся работы позволят решить, какой из трех, как сейчас принято говорить, драйверов имеет основные достоинства.

Размышляя об успехах и проблемах современной физики, о том, насколько исследования в этой обширной области продвигают вперед наши знания, неизбежно обращаешься и к другим областям науки. Физика, исследуя наиболее фундаментальные, глубинные процессы и структуры материи, создает фундамент практически для всех отраслей естествознания и входит в эти области в виде таких, например, важнейших научных направлений, как биофизика, геофизика, химическая физика, металлофизика, радиофизика и др. Каждое из этих направлений достойно отдельного подробного обзора, и довольно трудно представить себе, как можно было бы объединить в одной статье даже короткие упоминания о них. Однако есть такая взаимодействующая с физикой область, о которой непременно следует сказать несколько слов. Речь идет о математике.

Так сложилось, что в сознании многих людей физика и математика бытуют неразрывно, о чем свидетельствует, в частности, узаконенное словосочетание «физико-математический». Эта ситуация вполне объяснима: исторически физика раньше других областей науки начала широко использовать математические методы, да и сама методология современной физики в огромной мере опирается на применение и даже на разработку математического аппарата. Но желание сказать несколько слов о математике связано совсем не с этим, не с той важной ролью, которую она играет в прогрессе физики. Побудительная причина — совершенно новый уровень математизации всей нашей научной и практической деятельности, на который мы поднимаемся с появлением доступных электронно-вычислительных машин. Нам необходимо во многих случаях изменить сам строй нашего мышления в отношении этих машин, научиться более четко организовывать, алгоритмизировать свои рассуждения и размышления, используя технику, особенно для выполнения рутинных вычислительных или логических операций. Должна произойти определенная ломка нашей психологии. Процесс этот непростой, но неизбежный.

Физика, несмотря на свою фундаментальность, никогда не отгораживалась стеной, академизма от нужд практики, от запросов техники, химии, биологии и других областей, опирающихся на физические исследования. Сильна связь физики с практической деятельностью человека в нынешнее время, особенно в нашей стране, где использование научных открытий всегда, без каких-либо исключений, согласуется с интересами общества и возведено в ранг государственной политики. Но конечно же, поиск новых направлений использования результатов тех или иных фундаментальных работ, развитие прикладных исследований с учетом реальных интересов практики, передача научных достижений промышленности, то, что обычно называют внедрением, — все это области, в которых ученый всегда может изыскать резервы инициативы, творческой и деловой активности. Именно об этом напоминают нам слова Леонида Ильича Брежнева, произнесенные с трибуны XXVI съезда КПСС: «Страна крайне нуждается в том, чтобы усилия «большой науки», наряду с разработкой теоретических проблем, в большей мере были сосредоточены на решении ключевых народнохозяйственных вопросов, на открытиях, способных внести подлинно революционные изменения в производство».

Советские физики, как и все наши ученые, концентрируют свои усилия на разработке ключевых научных проблем, на продвижении вперед по всему фронту фундаментальных исследований. В то же время они всегда ищут и будут искать возможность прийти на помощь технике, промышленности, народному хозяйству страны, видят в этом свою первейшую профессиональную обязанность, свой высокий гражданский долг.

предыдущая главасодержаниеследующая глава




Rambler s Top100 Рейтинг@Mail.ru
© Злыгостев Алексей Сергеевич, 2001-2017
При копировании материалов активная ссылка обязательна:
http://nplit.ru 'NPLit.ru: Библиотека юного исследователя'