НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Глава 3. Двойная бухгалтерия живой клетки

В 1941 году Ф. Липман выдвинул концепцию, ставшую одним из краеугольных камней в здании биоэнергетики. Он предположил, что существует некий унифицированный посредник между процессами-поставщиками и процессами — потребителями энергии. Этим посредником, как утверждал Липман, служит АТФ. Формулируя свою гипотезу, ученый основывался на том факте, что как дыхание, так и брожение могут образовывать АТФ, а синтез углеводов и некоторые другие синтетические процессы, уже изученные к тому времени, сопровождаются расщеплением АТФ.

Последующие годы подтвердили правильность догадки Липмана. Описали образование АТФ за счет энергии света в клетках фотосинтезирующих организмов. Резко расширился список реакций использования АТФ. В него на сегодня вошли не только важнейшие биосинтезы, но также и ряд процессов совершения механической, осмотической и электрической работы, а также продукции тепла.

Двойная бухгалтерия живой клетки
Двойная бухгалтерия живой клетки

Схему Липмана не смогло поколебать открытие процессов, использующих энергию других, неадениловых нуклеозидтрифосфатов — гуанозинтрифосфата (ГТФ): уридинтрифосфата (УТФ); цитидинтрифосфата (ЦТФ). Все это аналоги, «близкие родственники» аденозинтрифосфата, которые получаются непосредственно из АТФ.

«Монополия» АТФ устояла и тогда, когда были обнаружены процессы, обеспечиваемые энергией фосфопирувата, фосфоацетата и неорганического пирофосфата. Все эти реакции, вместе взятые, составляют лишь очень небольшую долю от общего потребления энергии живой клеткой.

Свою хемиосмотическую гипотезу Митчел выдвинул через двадцать лет после публикации схемы Липмана. Введя понятие протонного потенциала, Митчел утверждал, что роль этого компонента в энергетике клетки сводится к функции мимолетного промежуточного продукта, образуемого дыханием и потребляемого АТФ-синтетазой.

В 1961 году было неясно, выполняет ли протонный потенциал такую функцию и существует ли он вообще. Биоэнергетикам потребовалось около десяти лет, чтобы ответить на эти два вопроса. Ответ, оказавшийся положительным, повлек за собой новый вопрос: ограничивается ли роль протонного потенциала его участием в дыхательном и фотосинтетическом фосфорилировании?

Вскоре стало очевидным, что протонный потенциал используется не только при синтезе АТФ, но и при обратном переносе электронов по дыхательной цепи. Затем у одной из бактерий обнаружили образование неорганического пирофосфата из двух молекул фосфорной кислоты за счет энергии протонного потенциала. Тем самым было показано, что синтез АТФ главный, но не единственный вид химической работы, производимой протонным потенциалом.

Шли годы, приносившие все новые сведения о биологической роли протонного потенциала. По существу, в биоэнергетике началась переоценка ценностей: старые, давно известные энергетические процессы заново исследовали на предмет их отношения к вновь открытому компоненту — протонному потенциалу.

Прежде всего, конечно, рассмотрели явления, так или иначе связанные с мембранами. И тут оказалось, что множество процессов осмотической работы по концентрированию веществ «оплачиваются» протонным потенциалом. Большое количество самых разнообразных веществ поступает в бактериальную клетку, двигаясь под действием электрического поля или разности концентраций ионов Н+.

Все известные сегодня процессы переноса веществ через мембрану митохондрий происходят за счет протонного потенциала. Треть всей энергии, потребляемой митохондриями для синтеза АТФ, так сказать на экспорт, для немитохондриальных частей клетки, идет не на реакцию образования АТФ как таковую, а на концентрирование АДФ и фосфата внутри митохондрий и откачку синтезированного АТФ из митохондрий в цитоплазму. Движущей силой этих транспортных процессов служит протонный потенциал. Он же поддерживает концентрирование в митохондриях карбоновых кислот, окисляемых при дыхании.

Даже такая специфическая функция, как образование дополнительных количеств тепла при охлаждении теплокровных животных, и та оказалась связанной с использованием протонного потенциала. Это терморегуляторное разобщение дыхания и синтеза АТФ, явление, о котором мы уже говорили, когда речь шла о мышцах стриженых голубей и буром жире хомяка.

С открытием движения бактерий за счет протонного потенциала пала последняя «монополия» АТФ, считавшегося единственной валютой, способной оплатить механическую работу клетки.

Итак, протонный потенциал может совершать различные виды химической, осмотической, механической работы, а также служит источником образования тепла. Если учесть, что первичная форма протонного потенциала - это разность электрических потенциалов на мембране, то мы вправе сделать следующий вывод: протонный потенциал наряду с АТФ есть конвертируемая форма энергии в живой клетке.

Действительно, протонный потенциал, как и АТФ, образуется несколькими путями в реакциях утилизации внешних энергетических ресурсов. Затем он используется по целому ряду каналов, совершая, подобно АТФ, все основные виды работы, характерные для живой системы.

Сравним для примера роль АТФ и протонного потенциала в энергетике клетки млекопитающего животного. Здесь есть четыре ферментные системы, образующие АТФ (главная среди них - протонная АТФ-синтетаза митохондрий) и три системы, генерирующие протонный потенциал (цитохромоксидаза и другие белки — генераторы, включенные в дыхательную цепь).

Образованный АТФ используется затем главным образом для синтеза биополимеров и их составных частей, а также для транспорта некоторых веществ (в основном через внешнюю мембрану клетки) и энергообеспечения механохимических (сократительных) систем клетки.

Протонный потенциал питает митохондриальную АТФ-синтетазу, поддерживает транспорт АТФ, АДФ, фосфата и карбоновых кислот через мембрану митохондрии. Кроме того, он разворачивает вспять определенные окислительные реакции, которые становятся в результате не потребителями, а поставщиками водорода, используемого затем во многих восстановительных синтезах. Если добавить к этому процессы транспорта ионов кальция и некоторых других веществ в митохондрии, а также расход протонного потенциала на образование тепла, то окажется, что не более половины энергии, превращенной в протонный потенциал, используется АТФ-синтетазой. Поэтому функция промежуточного продукта в АТФ-синтетазной реакции — это лишь половина дела, которое в действительности делает протонный потенциал.

Еще разнообразней пути использования протонного потенциала у бактерий. Здесь и механическая работа по вращению жгутиков, и транспорт широкого круга веществ — от ионов калия до ДНК, и синтез пирофосфата.

Так от исходной концепции Митчела, рассматривавшего протонный потенциал всего лишь как связующее звено между дыханием и фосфорилированием, мы пришли к ситуации, когда необходимо изменить «добрую старую» Липманову схему с ее постулатом об АТФ как единственной конвертируемой форме энергии в организме. Оказалось, что живая клетка располагает не одной, а двумя «валютами» для оплаты своих энергетических потребностей. Одна из них химическая, удобная для использования в водной фазе клетки. Это АТФ — вещество, отлично растворимое в воде, но крайне неподходящее для работы внутри мембран из-за нерастворимости в жиру. Другая «валюта» электрохимическая, неразрывно связанная с гидрофобной, мембранной, фазой той же клетки. Это протонный потенциал.

Сейчас уже трудно сказать, когда клетка завела себе такую «двойную бухгалтерию», оплачивая одни свои функции аденозинтрифосфатом, а другие - протонным потенциалом. Ясно лишь, что это случилось очень давно и такая двойственность характерна для всех ныне живущих организмов.

Это верно и для форм жизни, никогда не использующих протонный потенциал как сопрягающий фактор в том смысле, который первоначально предполагал Митчел. Были описаны анаэробные бактерии, синтезирующие АТФ единственным способом — за счет брожения. Протонный потенциал для этого не нужен. И тем не менее он образуется на мембране бактерий путем расщепления АТФ протонной АТФазой. Образовавшись, протонный потенциал используется затем для совершения, например, осмотической работы.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru