НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Цитохромоксидаза

Протонный потенциал, приводящий в движение механизм синтеза АТФ, генерируется ферментами дыхания. Среди них наиболее изучена цитохромоксидаза, последний фермент дыхательной цепи. Цитохромоксидаза катализирует окисление восстановленного цитохрома с кислородом. При этом ион двухвалентного железа (Fe2+), входящий в состав цитохрома с, теряет электрон и превращается в ион трехвалентного железа (Fe3+). Ионы Н+, необходимые для образования воды, черпаются из внутреннего объема митохондрии:

4Fe2 + O2 + 4Н+внутр. → 4Fe2+ + 2Н2О.

Окисленный цитохром с восстанавливается вновь посредством предшествующего компонента дыхательной цепи - производного хинона (он называется убихинол, сокращенно QH2). Процесс происходит таким образом, что ионы Н+, выделяющиеся при этой реакции, остаются снаружи митохондрии:

2QH2 + 4F3+ → 2Q + 4Fе2+ + 4Н+наружн.,

где Q — окисленная форма убихинола, называемая убихиноном. Суммарная реакция окисления убихинола кислородом может быть записана так:

2QH2 + O2 + 4Н+внутр. → 2Q + 2Н2О + 4Н+наружн.

Регенерация QH2 из Q осуществляется в конечном итоге за счет атомов водорода, отщепляемого от карбоновых кислот в цикле Кребса.

Итак, один акт восстановления молекулы кислорода до воды, катализируемый цитохромоксидазой, приводит к выделению четырех ионов Н+ по внешнюю сторону митохондриальной мембраны и к поглощению четырех Н+ по внутреннюю ее сторону.

В простейшем варианте цитохромоксидазного механизма, предложенном в свое время Митчелом, разделение зарядов этим ферментом обусловлено тем, что окисление убихинола происходит на внешней поверхности мембраны, после чего электроны переносятся через мембрану и восстанавливают кислород на противоположной, внутренней, поверхности мембраны. Однако впоследствии молодым финским биоэнергетиком М. Викстремом были поставлены опыты, показавшие, что механизм может быть более сложным. По Викстрему, потребление молекулы кислорода цитохромоксидазой сопровождается выделением не четырех, а восьми ионов водорода снаружи митохондрий.

Цитохромоксидаза
Цитохромоксидаза

Внешне опыт Викстрема выглядел весьма просто. К митохондриям добавляли восстановленный цитохром и измеряли кислотность среды. Оказалось, что среда закисляется, то есть митохондрии выделяют ионы Н+. Закисление исчезает, если создать бескислородные условия или отравить цитохромоксидазу цианидом.

Такой результат не объяснялся схемой цитохромоксидазы, рассмотренной Митчелом. Ведь цитохром с — донор электронов, окисление его железа (Fe2+) само по себе не может приводить к выделению ионов Н+. Чтобы свести концы с концами, Викстрем предположил, что цитохромоксидаза переносит через мембрану не только электроны, но и протоны, причем потоки этих заряженных частиц направлены в разные стороны: электроны движутся внутрь, а протоны — наружу.

У Митчела цитохромоксидаза играет давно известную для нее роль окислительного фермента — переносчика электронов с той лишь особенностью, что электроны переносятся поперек мембраны.

У Викстрема цитохромоксидаза выполняет сверх того еще и совсем другую функцию, действуя как протонный насос.

Митчел немедленно атаковал Викстрема, увидев в новой схеме ревизию своего механизма, который казался ему таким естественным.

Действительно, генерация протонного потенциала Митчеловой цитохромоксидазой есть прямое следствие химизма этого процесса. Если окисление убихинола и восстановление кислорода происходят по разные стороны мембраны, а цитохромоксидаза связывает эти две реакции, перенося через мембрану электроны, то прямым и неизбежным следствием такого процесса окажется накопление ионов Н+ снаружи митохондрий и их потребление внутри. Никакого специального устройства для генерации потенциала здесь не требуется. Достаточно уложить цитохромоксидазу поперек мембраны, как этот известный биохимикам уже 70 лет фермент автоматически становится генератором протонного потенциала.

С момента первой публикации хемиосмотической гипотезы Митчел и его сторонники всегда приводили цитохромоксидазу как наиболее наглядный пример фермента-генератора. И вот теперь, когда гипотеза Митчела в целом уже доказана, вдруг появляется вихрастый молодой парень из Хельсинки и заявляет в глаза основателю мембранной биоэнергетики:

— Ваш взгляд слишком упрощен. Цитохромоксидаза не только фермент, но и протонный насос!

Сначала Митчел третировал данные Викстрема как примитивный артефакт.

— Выделение протонов при окислении цитохрома с, — говорил он, — обусловлено взаимодействием продукта реакции с мембраной митохондрий.

В ответ на это возражение Викстрем заменил цитохром с искусственным донором электронов — ферроцианидом, который с мембраной не взаимодействует. Выделение Н+ сохранилось.

Тогда Митчел указал на другую возможность: не происходит ли в системе Викстрема окисление убихинола?

Викстрем возразил, что он обрабатывал митохондрии целым коктейлем ядов, которые должны были перекрыть все подходы к убихинолу. Чтобы окончательно отбросить возражение оппонента, Викстрем поставил опыты на цитохромоксидазных протеолипосомах, где убихинола вовсе не было. И вновь наблюдалось выделение ионов водорода. Правда, оно было меньше, чем в митохондриях, но уменьшение можно было легко объяснить разницей в размере митохондрий и протеолипосом (последние гораздо мельче).

- Что толку в объяснении? Эффект мал. Почему я должен в него верить? — высокомерно возразил Митчел.

Чтобы решить спор, я предложил Викстрему попытаться сделать большие протеолипосомы. Этот совет не вызвал у него энтузиазма.

- Большие протеолипосомы, конечно, лучше маленьких, но как их сделать большими?

Викстрему так и не удалось увеличить размер протеолипосом. Но совсем недавно эту проблему решил мелсиканец М. Монтал. Он приготовил цитохромоксидазные протеолипосомы диаметром в десять раз больше митохондрий. Теперь дело за Викстремом: если он прав, должно быть массированное выделение водородных ионов при окислении ферроцианида в протеолипосоодах-гигантах.

Ожесточенная дискуссия между Митчелом и Викстремом, не прекращающаяся и по сей день, последние несколько лет заметно оживляла обстановку на собраниях биоэнергетиков.

Совсем недавно наметилась неожиданная возможность почетного для обеих сторон разрешения затянувшегося спора. У одного из видов бактерий обнаружили необычную цитохромоксидазу, состоящую всего из двух белковых цепей (у митохондриального фермента их семь). По предварительным данным Г. Шаца из Швейцарии, эта «простая» цитохромоксидаза не закисляет среду при добавлении ферроцианида, хотя и образует протонный потенциал. Возможно, что этот фермент работает по Митчелу, а цитохромоксидаза митохондрий — но Викстрему. Можно предположить, например, что пять «лишних» белков митохондриальной цитохромоксидазы образуют протонные каналы, в то время как два белка, общих с ферментом из бактерии, отвечают за реакцию переноса электронов.

В этой связи надо указать на один момент, связанный с эффективностью цитохромоксидазного генератора. Схема Митчела при всей своей простоте страдает одним недостатком: КПД Митчеловой цитохромоксидазы менее 50 процентов. Механизм Викстрема сложнее, но зато почти вся энергия, выделяющаяся при окислительной реакции, используется для создания протонного потенциала.

Не исключено, что эволюция этой системы шла в направлении «от Митчела к Викстрему». Тогда бактерии с «простой» цитохромоксидазой используют примитивный (но, может быть, более устойчивый) механизм, а митохондрии — более сложную и совершенную систему.

Для окончательного решения этой проблемы необходимы детальные сведения об устройстве двух типов цитохромоксидаз.

Кое-что нам известно уже сегодня. Показано, что оба фермента содержат по два атома железа и по два атома меди, причем железо входит в состав тема, плоского органического макроцикла, подобного тому, что найден в гемоглобине крови. Именно атомы металлов участвуют в переносе электронов цитохромоксидазами. Для пяти из семи белков митохондриального фермента выяснена первичная структура, то есть последовательность аминокислот, составляющих белковую цепь. Для фермента из бактерий эта работа еще не начата.

Выяснена примерная топография фермента митохондрий (но не бактерий): показано, что некоторые из белков смотрят наружу митохондрий, другие внутрь, а третьи пронизывают мембрану насквозь. В целом цитохромоксидаза имеет вид буквы Y, причем «ножка» довольно сильно высунута из мембраны на внешней ее стороне, а кончики «рогов» чуть выдаются в воду с противоположной, внутренней стороны мембраны. К «ножке» лепится небольшой белок цитохром с.

Пространственная структура бактериального фермента неизвестна.

Ни для того, ни для другого фермента неясен путь электрона. Известно лишь, что электрон поставляется цитохромом с (Fe2+) на внешней поверхности мембраны. Затем он передается, как по эстафете, от одного атома железа или меди к другому вплоть до кислорода. Мы не знаем ни точной локализации атомов железа и меди в мембране, ни того места, где происходит восстановление кислорода. Загадкой остается и путь протонов, необходимых для образования воды при восстановлении кислорода.

Эта последняя проблема была исследована нашим сотрудником А. Константиновым. Он поставил ряд остроумных опытов, призванных ответить на' вопрос, изменяется ли характер взаимодействия цитохромоксидазы с протонами при появлении электрического поля на мембране митохондрий. Не вдаваясь в детали экспериментов, скажу лишь, что влияние поля было обнаружено. Оно оказалось таким, как если бы ионы Н+ транспортировались из внутреннего пространства митохондрий в толщу мембраны на некую глубину. По-видимому, именно там, в глубине мембраны, и происходит передача протонов на молекулу кислорода, получившую электроны от цитохромоксидазы.

Вот, пожалуй, и все то существенное, что можно сказать об устройстве цитохромоксидазного генератора. Как видно, ситуация здесь не многим отличается от той, в которой находятся исследования по АТФ-синтетазе: мы все еще далеки от создания точного чертежа этих загадочных преобразователей энергии.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru