НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

История с двумя фотонами

Природа познаваема, и наука последовательно снимает покровы с ее заветных тайн. Пока мы не знаем биографии вселенной до нынешнего момента, не знаем, что ждет ее в необозримом будущем. Может быть, она разбежится, а может, снова сожмется в точку. И возможно, ответы на многие из вопросов, касающихся судеб мироздания, принесет физика элементарных частиц - наука, изучающая микромир. Ничего здесь парадоксального нет. Главная задача и физики элементарных частиц, и астрофизики - понять, как устроена окружающая нас природа. Вот почему исследования микромира и мегамира сейчас порой тесно смыкаются. Наглядный тому пример - история с двумя фотонами, о которой я хочу рассказать.

Всюду, начиная от пламени обыкновенной спички и кончая звездами и Солнцем, каждый, образно говоря, переход электрона с более высокой орбиты вокруг ядра на более низкую сопровождается испусканием одного, и только одного, фотона. Такова природа этого явления, известного нам со школьной скамьи.

Однако еще в конце 20-х годов немецкий физик-теоретик М. Гепперт-Майер, опираясь на только что появившийся тогда теоретический аппарат квантовой механики, показал чисто математическим путем, что переходы атома из одного состояния в другое могут вызвать появление одновременно двух фотонов. При этом сумма энергий обоих должна быть постоянной и равной разности энергии исходного и конечного энергетических уровней атома.

В начале 40-х годов ученые сочли очевидным, что двухфотонное излучение вполне реально при одном из переходов атома водорода. Правда, вероятность такого события в миллион раз меньше, чем обычного однофо-тонного перехода. Дело в том, что для появления двух-фотонного излучения необходимы условия, при которых ничего не должно помешать возбужденному атому «прожить» в особом, метастабильном состоянии положенное время - около десятой доли секунды. А помешать здесь способны случайные столкновения с другими атомами или фотонами.

Выход ясен: нужна сильно разреженная среда, в которой одновременно чрезвычайно мала и плотность излучения. По расчетам выходило, что даже предельно малые концентрации вещества при этом должны быть в миллион раз меньше тех, что достигаются в самых совершенных вакуумных камерах на Земле. Вот почему в течение полувека в физических лабораториях так и не сумели получить экспериментального доказательства одного из фундаментальных предсказаний квантовой механики.

Между тем необходимые для двухфотонного излучения условия существуют в планетарных туманностях. Именно к ним в последние 20-30 лет обращали свои взоры физики и астрофизики в надежде обнаружить неуловимое излучение. И что вы думаете? Именно там они его нашли. На полученной в космосе с помощью «Ориона-2» спектрограмме одной из планетарных туманностей наконец-то отыскались явные признаки двухфотонного излучения водорода. Тщательная проверка, проведенная разными способами, полностью подтвердила этот вывод.

Итак, пока увенчалась успехом лишь одна попытка. Но Рубикон перейден. Внеатмосферная астрономия, которой космонавтика дала жизнь, уверенно шагает в грядущее. И ей суждено раскрыть самые сокровенные тайны вселенной.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru