Новости Библиотека Учёные Ссылки Карта сайта О проекте


Пользовательский поиск







предыдущая главасодержаниеследующая глава

ГЛАВА 6. КВАЗИОПТИКА

Филология и математика

«Квази» - часть сложных слов, означающая «якобы», «мнимый», «ненастоящий», например, квазиученый, квазиспециалист.

Возможно, что ученый, введший в употребление термин «квазиоптика», не знал латыни. На мысль об этом наводит Большая Советская Энциклопедия откуда выписано определение столь непривлекательного смысла приставки «квази».

В действительности квазиоптика - самая настоящая оптика, которой оказалось недостаточно ее традиционных владений, области видимого света, и она присоединила к ней все, вплоть до области сантиметровых радиоволн. Но, проявив себя столь агрессивной по отношению к соседям, квазиоптика не распространяет своих амбиций на всю многоэтажную конструкцию, выросшую на фундаменте, заложенном Декартом, Ньютоном, Гюйгенсом и Френелем. Она не интересуется ни природой спектров, ни спектральным анализом, ни процессами поглощения и рассеяния ни сложными взаимоотношениями оптики с другими областями науки.

Квазиоптика поставила перед собой, казалось, неразрешимую задачу примирить вечно враждующих антиподов - оптику волн и оптику лучей, волновую оптику и геометрическую оптику. Впрочем, можно согласиться и с противоположной точкой зрения: квазиоптика родилась от союза геометрической оптики с волновой.

Геометрическая оптика в своем названии выражает потрясающую способность математики, в частности геометрии, выражать закономерности явлений, отвлекаясь от их конкретной физической сущности.

Великий геометр древности Эвклид мог пользоваться законом отражения света, не зная ничего о природе света. Он видел свет и тени. Знал, что отверстие в ставне выделяет из всей массы света один луч. Мог убедиться в том, что луч отражается от пластинки металла или поверхности воды под тем же углом, под которым он падает. Этого хватило на века.

Снеллиус и Декарт через полторы тысячи лет установили закон преломления света. Вопрос о том, почему свет преломляется так, а не иначе, волновал самых крупных физиков. Ньютон ожесточенно спорил с Гуком и Гюйгенсом, много позже - Био спорил с Френелем, Лоренц с Максвеллом...

Но математикам до этого не было никакого дела. В их руках было два закона. Почему они таковы, что лежит в их основе - несущественно для математиков. Важно, что закон отражения и закон преломления отображают свойства природы, верно описывают какой-то круг взаимодействий света и вещества. Исходя из них, Математики могут и должны построить методы, позволяющие извлечь все следствия из этих законов, рассчитывать линзы для очков и телескопов, создавать микроскопы и волшебные фонари.

Величайшие математики Гамильтон, Гаусс и многие другие вложили свой вклад в создание и развитие геометрической оптики. В наш век, век узкой специализации, появились специалисты по расчету оптических приборов, основным орудием которых стала геометрическая оптика. По существу, они являются математиками. Из всей остальной физики они применяют только закон дисперсии, описывающий зависимость показателя преломления от частоты. Почему зависимость такова - их не интересует. Такова природа, рассуждают они, занятые своей работой, и учитывают это, подбирая стекла различных сортов.

Конечно, после торжества френелевской волновой теории ни один образованный человек не рискнул бы ее отрицать. Да и поклонники геометрической оптики не пытались описать своими методами все явления, возникающие при взаимодействии двух лучей света, или способность света огибать препятствия. Более того, проектировщики, завершающие расчет телескопа или микроскопа, вынуждены прибегать к волновой теории для того, чтобы оценить разрешающую способность своего прибора. Ибо они знают, что именно явление дифракции ограничивает размеры мельчайших деталей, которые можно еще различить при помощи микроскопа, или определяет условия, при которых большой телескоп обнаружит две близких звезды там, где меньший изображает их как одну светящуюся точку.

предыдущая главасодержаниеследующая глава





Rambler s Top100 Рейтинг@Mail.ru
© Злыгостев Алексей Сергеевич, 2001-2017
При копировании материалов активная ссылка обязательна:
http://nplit.ru 'NPLit.ru: Библиотека юного исследователя'