НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Ответ машины

Только Прохоров поддержал своего молодого сотрудника. Он сразу включился в эти исследования и привлек к ним А. Л. Дышко, специалистку по вычислительной математике. Раз приближенные аналитические методы оказались непригодными, пришлось призвать на помощь электронную вычислительную машину. Предстояла сложная трудоемкая работа.

Решили отказаться от каких-либо предвзятых предположений о судьбе пучка за точкой схлопывания. Maшине были предложены уравнения, описывающие наиболее простую задачу: на плоскую границу вещества, о котором известно, что в нем наблюдается квадративный эффект Керра, падает пучок света. Машина должна была определить, что будет происходить с ним по мере продвижения вглубь вещества.

Легко представить волнение, с которым исследователи ожидали результат, рождавшийся в электронных недрах вычислительной машины БЭСМ-6.

Проработав положенное время, машина сообщила: при этих условиях волноводного режима нет. За точкой схлопывания образуется некоторое число фокусов - областей с очень высокой концентрацией энергии и чрезвычайно малыми размерами.

Ответ в корне расходился не только со всеми вариантами существующих теорий, но и противоречил всем известным экспериментальным данным!

Было от чего прийти в уныние. Ведь они надеялись получить строгую и надежную картину перехода от постепенной самофокусировки через точку схлопывания к тонкой нити. Но ошибки не было. Уравнения верны, машина сработала правильно.

Тогда они предложили машине вторую задачу, точнее соответствующую условиям большинства опытов. Перед попаданием в нелинейную среду пучок света предварительно проходит собирающую линзу. Машина решила и эти уравнения.

Ответ был тем же. Никакой нити. Цепочка отдельных фокусов.

В чем же дело? Может, постановка задачи в чем-то не соответствует реальности? Возможно, цепочка фокусов результат того, что из всего многообразия явлений при расчете учитывался только эффект Керра? Вполне вероятно и такое предположение - возникновение тонких нитей вызвано не эффектом Керра, а каким-то другим процессом.

Уравнения были усложнены. Теперь они отражали и действие вынужденного комбинационного рассеяния. Явления хорошо изученного, проявляющегося особенно сильно при больших интенсивностях света и известного как одна из причин самофокусировки.

Снова часы ожидания перед машиной. И новый ответ. Многофокусная структура должна существовать! Учет вынужденного комбинационного рассеяния приводит только к изменению численных величин. Узкого канала не возникает и в этом случае.

Казалось, оставался единственный путь. Перебирать один за другим все эффекты, способные привести к формированию тонких каналов. Записывать все новые, вероятно, все более сложные, уравнения. И уповать на мощь БЭСМ-6. Возможно, что будет обнаружен эффект, ответственный за волноводное распространение света, за образование тонких, ярко светящихся нитей.

Нужна мощная интуиция для того, чтобы избрать другой путь. Отвергнуть очевидность многочисленных опытов. Отказаться от обаяния общепризнанных теорий. Сойти с проторенной тропы.

Прохоров и Луговой решили по-новому взглянуть на ответы машины. Не как на ошибку. Не как на результат неверного выбора исходных физических данных. А как на правильный вывод, соответствующий слишком упрощенно поставленной задаче. Ведь гигантский импульс лазера длится мгновение, точнее - десятки наносекунд, проще - сотые части от миллионной доли секунды. А они предлагали машине задачи, в которых пучки света действуют непрерывно с постоянной мощностью. И в зависимости от этой мощности получали различные расстояния до множества фокусов.

Вот где причина! Во время гигантской вспышки лазера мощность света меняется от нуля до огромной величины. Расстояния до фокусов не могут при этом быть постоянными. Они должны изменяться вместе с увеличением мощности. Фокусы должны перемещаться!

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru