НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

ВОКРУГ КВАНТА

ЛЮДИ, СОБЫТИЯ, КВАНТЫ

Результаты науки не зависят от психологии или желаний отдельных людей, и в этой объективности — ее сила и ценность. И все же наука — дело человеческое, и оттого ее история — это не только развитие физических понятий и математических методов, но также история человеческих судеб. Рядом с открытиями любая подробность жизни ученых выглядит значительной: мы всегда стремимся понять, как та или иная мелочь, из которых складывается повседневная жизнь великих людей, повлияла на дела, которые их обессмертили.

История создания квантовой механики сохранила для нас несколько живых воспоминаний, которые помогают представить ту обстановку напряжения и подъема, в которой люди разных национальностей, возрастов и темпераментов всего за три года построили современное здание квантовой механики.

Быть может, все началось с того, что в конце мая 1925 года Вернер Гейзенберг заболел сенной лихорадкой и по совету своего тогдашнего руководителя Макса Борна уехал отдыхать на остров Гельголанд в Балтийском море. Там у него было время проделать подробные вычисления, без которых не удавалось разрешить давно мучившую его идею. Уже 5 июня, по возвращении из отпуска, он написал о своих вычислениях Кронигу, а 24 июня — подробное письмо Паули, в котором содержалось начало будущей матричной механики. Правда, математическая культура Гейзенберга уступала глубине его физических идей: он не знал даже, что величины, которые он тогда ввел, в математике уже давно известны под названием матриц. Поэтому сформулировать теорию Гейзенберга математически строго удалось лишь с помощью Макса Борна и совсем молодого тогда Паскуаля Иордана. Уже в июле они завершили в Геттингене построение матричной механики.

Независимо от них в Кембридже ту же задачу решил Поль Дирак, который летом 1925 года на семинаре у Петра Леонидовича Капицы слушал доклад Гейзенберга, посетившего Англию вскоре после выздоровления.

С помощью этой новой математики осенью того же года Вольфганг Паули нашел уровни энергии атома водорода и доказал, что они совпадают с уровнями атома Бора.

В то же лето Гаудсмит и Уленбек предложили гипотезу о спине электрона, Луи де Бройль окончательно разработал идею о волнах материи, а Эльзассер и Эйнштейн посоветовали объяснить с помощью этих теорий эксперименты Дэвиссона и Кенсмена по отражению электронных пучков от поверхности металлов.

Волновая механика родилась год спустя, весной 1926 года. Ее встретили недоверчиво, поскольку в ней явно отсутствовали квантовые скачки — то, к чему лишь недавно и с большим трудом привыкли и что считалось главной особенностью атомных явлений.

В июне 1926 года Гейзенберг приехал в Мюнхен навестить родителей и «...пришел в совершенное отчаяние», услышав на одном из семинаров доклад Эрвина Шредингера и его интерпретацию квантовой механики.

Споры о волновой механике продолжались часами и днями и достигли предельной остроты в сентябре 1926 года, когда Шредингер приехал по приглашению Бора в Копенгаген.

Шредингер настолько устал от дискуссий, что даже заболел и несколько дней провел в доме Бора, который в течение всей болезни гостя почти не отходил от его постели.

Время от времени, характерным жестом подняв палец, Нильс Бор повторял:

— Но, Шредингер, вы все-таки должны согласиться... Однажды почти в отчаянии Шредингер воскликнул:

— Если мы собираемся сохранить эти проклятые квантовые скачки, то я вообще сожалею, что имел дело с атомной теорией!

— Зато остальные весьма признательны вам за это, — ответил ему Бор.

С течением времени точки зрения сторонников матричной и волновой механик сближались. Сам Шредингер доказал их математическую эквивалентность, а Макс Борн летом 1926 года догадался, какой физический смысл следует приписать ψ-функции Шредингера.

Опыты по дифракции электронов, ставшие известными осенью 1926 года, сильно укрепили веру в теории де Бройля и Шредингера. Постепенно физики поняли, что дуализм «волна-частица» — это экспериментальный факт, который следует принять без обсуждений и положить его в основу всех теоретических построений.

Теперь ученые старались понять, к каким следствиям приводит этот факт и какие ограничения он накладывает на представления об атомных процессах. При этом они сталкивались с десятками парадоксов, понять смысл которых зачастую не удавалось.

В ту осень 1926 года Гейзенберг жил в мансарде физического института в Копенгагене. По вечерам к нему наверх поднимался Бор, и начинались дискуссии, которые часто затягивались за полночь. «Иногда они заканчивались полным отчаянием из-за непонятности квантовой теории уже в квартире Бора за стаканом портвейна, — вспоминал Гейзенберг. — Однажды после одной такой дискуссии я, глубоко обеспокоенный, спустился в расположенный за институтом Фэллед-парк, чтобы прогуляться на свежем воздухе и немного успокоиться перед сном. Во время этой прогулки под усеянным звездами ночным небом у меня мелькнула мысль, не следует ли постулировать, что природа допускает существование только таких экспериментальных ситуаций, в которых... нельзя одновременно определить место и скорость частицы».

В этой мысли — зародыш будущего соотношения неопределенностей.

Быть может, чтобы снять напряжение этих дней, в конце февраля 1927 года Нильс Бор уехал в Норвегию отдохнуть и походить на лыжах. Оставшись один, Гейзенберг продолжал напряженно думать. В частности, его очень занимал давний вопрос товарища по учебе, сына известного физика Друде: «Почему нельзя наблюдать орбиту электрона в атоме при помощи лучей с очень короткой длиной волны, например гамма-лучей?»

Обсуждение этого эксперимента довольно быстро привело его к соотношению неопределенностей, и уже 23 февраля он написал об этом Паули письмо на 14 страницах.

Через несколько дней возвратился из отпуска Бор с готовой идеей дополнительности, которую он окончательно продумал в Норвегии.

Еще через несколько недель напряженных дискуссий с участием Оскара Клейна все пришли к выводу, что соотношение неопределенностей — это частный случай принципа дополнительности, для которого возможна количественная запись на языке формул.

В последующие месяцы интерпретация математического формализма квантовой механики дополнялась и уточнялась и окончательно утвердилась в Брюсселе на Сольвеевском конгрессе осенью 1927 года. На этот конгресс собрались Планк, Эйнштейн, Лоренц, Бор, де Бройль, Борн, Шредингер, а из молодых — Гейзенберг, Паули, Дирак, Крамерс. Это была самая суровая проверка всех положений квантовой механики. Она ее с честью выдержала и с тех пор почти не претерпела никаких изменений.

В те годы в Копенгагене, в институте Бора, была создана не только наука об атоме — там выросла интернациональная семья молодых физиков. Среди них были Гейзенберг, Паули, Крамерс, Гамов, Ландау, Гаудсмит и многие другие. Беспримерное в истории науки содружество ученых отличали бескомпромиссное стремление к истине, искреннее восхищение перед величием задач, которые им предстояло решить, и неистребимое чувство юмора, которое так гармонировало с общим духом интеллектуального благородства: «Есть вещи настолько серьезные, что о них можно говорить лишь шутя», — любил повторять Нильс Бор. который стал их учителем и духовным отцом.

Через много лет политические бури разбросают их по всему миру: Гейзенберг станет главой немецкого «уранового проекта»; Нильс Бор, спасаясь от нацистов, окажется в американском центре атомных исследований в Лос-Аламосе, а Гаудсмита назначат руководителем миссии «Алсос», которая будет призвана выяснить, что успел сделать Гейзенберг для постройки немецкой атомной бомбы.

Сейчас этих людей осталось совсем немного, и вместе с ними из жизни уходит целая эпоха в физике, которую можно сравнить лишь с эпохами Галилея и Ньютона.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru