НОВОСТИ   БИБЛИОТЕКА   УЧЁНЫЕ   ССЫЛКИ   КАРТА САЙТА   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

ВЕРОЯТНОСТЬ И СПЕКТРЫ АТОМОВ

Не только форма атома, но и все процессы в нем подчиняются законам теории вероятностей. Имея дело с отдельным атомом, никогда нельзя сказать наверняка, где находится его электрон, куда он попадет в следующий момент и что произойдет при этом с самим атомом.

Однако уравнения квантовой механики всегда позволяют вычислить вероятности всех этих процессов. Вероятностные предсказания можно потом проверить и убедиться, что они достоверны, если провести достаточно много одинаковых испытаний. Даже такие люди, как Резерфорд, далеко не сразу поняли эту особенность атомных процессов.

Он был первым читателем тогда еще рукописной статьи Бора о строении атомов. Ознакомившись с ней, Резерфорд с присущей ему прямотой и резкостью спросил Бора: «А откуда электрон, сидящий на n-й орбите, знает, куда ему надо прыгнуть: на k-ю или на j-ю орбиту?» Тогда, в 1913 году, Бор ничего не смог ответить Резерфорду. И лишь теперь, после работы трех поколении физиков, вопрос прояснился до такой степени, что даже мы в состоянии в нем разобраться.

Электрон вовсе ничего «не знает» заранее - он лишь подчиняется законам квантовой механики. Согласно этим законам для электрона в любом квантовом состоянии (например, в состоянии с квантовым числом n) всегда существует строго определенная вероятность перейти в любое другое состояние (например, в состояние k). Как всегда, вероятность Wnk перехода n ->k — это число, значение которго зависит от выбора пары квантовых состояний n и k. И если мы переберем всевозможные комбинации номеров n и k, то получим квадратную таблицу чисел Wnk. Мы уже знаем, что такая таблица называется матрицей. И матрица эта представляет внутреннее состояние атома.

Только теперь мы можем оценить интуицию Гейзенберга, который, ничего не зная о законах вероятности, управляющих квантовыми процессами в атоме все-таки правильно почувствовал их особенности и ввел свои матрицы. {Xnk} и {Pnk}. Как выяснилось немного позже, через эти матрицы матрица вероятности Wnk выражается довольно просто. А матрицы Гейзенберга, в свою очередь, легко вычислить, решив уравнение Шредингера.

Рассуждения, которые мы только что проследили, несмотря на свою простоту, весьма плодотворны. Например, с их помощью довольно легко можно объяснить, почему в желтом дублете D-линии натрия — линия D2 в два раза интенсивнее, чем линия D1.

Более того, последовательно используя уравнения квантовой механики, можно выяснить и более тонкие особенности строения этих линий, например законы изменения интенсивности внутри их самих. Но все эти радости доступны только специалистам.

предыдущая главасодержаниеследующая глава










© NPLIT.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://nplit.ru/ 'Библиотека юного исследователя'
Рейтинг@Mail.ru