Новости Библиотека Учёные Ссылки Карта сайта О проекте


Пользовательский поиск







предыдущая главасодержаниеследующая глава

ЭЛЕКТРОНЫ

Первоначально с этим словом не связывали понятия о частице. Оно служило лишь для обозначения того наименьшего количества заряда, которое может переносить с собой ион любого атома. Однако подспудно мысль о том, что электрон — частица, всегда жила. Действительно, проследите мысленно процесс электролиза: вот ион натрия (Na+), двигаясь в растворе под действием электрического поля, подходит к катоду; на катоде избыток отрицательных зарядов, поэтому в момент, когда ион Na+ его касается, он забирает от катода один отрицательный заряд и, не меняя веса, выделяется в виде нейтрального атома натрия.

Попробуйте теперь вообразить сам момент перехода отрицательного заряда от катода к иону Na+: что добавляется к иону, когда он, не меняя веса, становится нейтральным?

Представить себе этот процесс довольно трудно, если не предполагать при этом, что элементарный заряд может существовать и вне атома. Эту трудность сознавали, конечно, все, но признать атомарное строение электричества было еще труднее, ибо при этом рушились удобные и привычные представления об электричестве как о некоем тонком флюиде, который без труда проникает во все тела.

В 1881 году на собрании Лондонского химического общества, посвященном чествованию памяти Майкла Фарадея, Герман Людвиг Фердинанд фон Гельмгольц (1821—1894) прочел доклад «Современное развитие взгляда Фарадея на электричество». В этом докладе Гельмгольц впервые отчетливо сформулировал мысль о «молекулярном строении электричества». Конечно, сама по себе эта мысль даже в то время не была новой.

Еще в 1749 году великий американец Бенджамен Франклин подозревал нечто похожее, но тогда его догадка ни на чем, в сущности, не была основана, а потому и не привела к новым - следствиям. В 1871 году к мысли Франклина возвратился немецкий физик Вильгельм Эдуард Вебер (1804—1891), но сочувствия не встретил: в его время об электричестве знали уже так много, что на веру гипотез не принимали — знание предполагает ответственность. Нужны были экспериментальные доказательства идеи об электроне. Их стал Л искать в явлениях проводимости газов.

Бенджамен Франклин
Бенджамен Франклин

Представьте себе стеклянную трубку, наполненную каким-либо газом (например, неоном) и запаянную с обоих концов вместе с проволочками (обычно - платиновыми). Если мы обе эти проволочки присоединим к разным полюсам батареи: одну к отрицательному (катоду), а другую — к положительному (аноду), то по цепи пойдет ток. Совершенно так же, как и в случае с электролитом. Вероятно, именно эта аналогия с явлениями электролиза и побудила в свое время (в 1838 году) Майкла Фарадея построить прообраз такой трубки («электрическое яйцо» Фарадея). Как мы увидим позже, аналогия была чисто внешней, но и само по себе явление проводимости газов было настолько интересным, что многие исследователи посвятили жизнь изучению его свойств.

Примерно в середине прошлого века Юлиус Плюккер (1801 — 1868)(это имя знакомо теперь каждому математику) оставил свои занятия геометрией, которые не нашли признания среди современников, и увлекся опытной физикой. Когда вы следите за игрой световых реклам, вы обязаны этим зрелищем профессору математики в Берлине и Бонне. Именно Плюккер в 1858,году изобрел эти светящиеся трубки. (Обычно их называли Гейслеровыми, по имени знаменитого стеклодува Генриха Гейслера, который был техническим ассистентом Плюккера и научился особенно искусно их изготовлять; а еще полвека спустя их повсеместно называли трубками Крукса).

Прежде всего Плюккер установил, что проводимость газа зависит от его концентрации в трубке и возрастает, если часть газа из трубки откачать. При этом каждый газ начинает светиться своим характерным цветом, так что по цвету свечения можно определить состав газа в трубке. (К этому выводу Плюккер пришел даже раньше Кирхгофа и Бунзена, но не понял его значения.) Если увеличивать разрежение в трубке, то вблизи катода появляется темное пространство («катодное пятно»), которое при дальнейшем откачивании газа из трубки расширяется и наконец заполняет ее всю: трубка перестает светиться. Но это темное пространство живет, его пронизывают какие-то «лучи», хоть и невидимые для глаза (как невидима летящая пуля, пока не встретит препятствия на своем пути).

Плюккер
Плюккер

Ученик Плюккера Евгений Гольдштейн (1850— 1931) в 1876 году дал им название: катодные лучи. Еще раньше, в 1869 году, другой его ученик, Иоганн Вильгельм Гитторф (1824—1914), обнаружил отклонение этих лучей в магнитном поле, и наконец в 1879 году Кромвель Вэрли (1828—1883) показал, что они заряжены отрицательно.

Поставьте себя на место этих исследователей: 70-е годы XIX столетия, у вас в руках набор интересных фактов, однако связи между ними не видно. С одной стороны, явление проводимости газов очень напоминает процессы электролиза, но, с другой стороны, происходят вещи совсем непонятные: например, проводимость растет с уменьшением концентрации газа в трубке. Кроме того, обнаружен только поток отрицательных «лучей» и не обнаружено положительных.

Нужна была руководящая идея.

Такая идея возникла после блестящих опытов, которые поставил Уильям Крукс — английский физик и химик. Это был интересный человек, наделенный к тому же редким даром — предвидеть фундаментальные открытия. Крукс нигде не служил и всецело был предан науке (что не помешало ему, однако, верить в спиритизм и в 1913 году стать президентом Королевского общества).

Прежде всего, он гораздо сильнее откачал воздух из трубки. При этом от катода отделилось еще одно, более темное пространство, которое также постепенно заполнило всю трубку, после чего анод вспыхнул зеленоватым светом. Тот день 1878 года, когда это произошло, можно считать днем рождения электроннолучевой трубки — основной части современного телевизора. Уже за одно это Круксу обеспечено признание потомков. Но для самого Крукса это было только началом — он стал тщательно изучать свойства излучения, которое он называл лучистой материей (этот термин ввел все тот же Фарадей еще в 1816 году). Крукс чувствовал, что столкнулся с совершенно новым явлением природы, и предлагал назвать его «четвертым состоянием вещества», которое «ни жидко, ни твердо, ни газообразно». Он писал:

«Изучая четвертое, лучистое состояние материи, мы, как мне кажется, имеем под руками и в сфере нашим исследований те первичные атомы материи, из которых, как вполне основательно предполагают, состоят все тела природы. Мы видим, что лучистая материя! по одним своим свойствам так же материальна, как вот этот стол, по другим — она скорее похожа на лучистую энергию. Мы действительно коснулись той пограничной области, где материя и энергия переходят друг в друга. Я думаю, что величайшие задачи будущего, найдут свое разрешение именно в этой пограничной! области; более того, здесь, как мне кажется, лежит граница всего реального мира».

Чтобы оценить смелость Крукса, надо вспомнить, что в то время весь мир разделяли на материю и эфир, причем две эти его части считали противоположными и несовместимыми: с материей отождествляли частицы, а с эфиром — среду, колебания которой мы воспринимаем как лучи света.

Таким образом, лучистая материя Крукса должна была совмещать в себе свойства несовместимые: луча и частицы. Через полстолетие все могли убедиться, на сколько он был прав, но в то время (по словам Оливеpa Лоджа — современника и соотечественника Крукса) «...предположение Крукса имело судьбу тех проблесков мысли, которые иногда разрешаются авторам, но подвергаются насмешкам со стороны ортодоксальной науки их времени».

Независимо от смысла, который Крукс вкладывал в понятие «лучистая материя», он бесспорными опытами обнаружил у нее такие свойства: она распространяется прямолинейно; вызывает свечение тел и может их даже расплавить; отклоняется в электрическом и магнитном полях; проникает сквозь твердые тела, а в воздухе проходит путь 7 см, в то время как атомы — только 0,002 см.

Опираясь на эти факты, Уильям Крукс утверждал: катодные лучи, или лучистая материя, есть поток быстрых отрицательных частиц, величина которых значительно меньше размеров атомов.

Легко убедиться, что высказанная гипотеза проясняла все свойства катодных лучей. В частности, ею можно легко объяснить появление темного пространства у катода: его величина определялась просто средним расстоянием, которое пролетают электроны, не сталкиваясь с атомами газа. Очевидно, это расстояние растет по мере выкачивания газа из трубки. Но главное значение гипотезы в другом: именно она стала той руководящей идеей, которая позволила почувствовать себя устойчиво в море фактов, накопленных к тому времени.

Физики знали теперь, куда идти и что искать: необходимо было выделить «атом электричества» и определить его свойства: заряд, массу и размеры.

На это понадобилось почти 20 лет и усилия таких больших физиков, как Джозеф Джон Томсон (1856—1940), Джон Таунсенд (1868—1957), Вильгельм Вин (1864—1928), Джордж Фитцжеральд (1851—1901), Эмиль Вихерт (1861—1928), Жан Перрен (1870—1942), Роберт Эндрюс Милликен (1868—1953). У нас нет возможности рассказать сейчас об остроумии и тонкости опытов, которые придумали эти и многие другие ученые. Поэтому проследим просто, как гипотетический «атом электричества» обретал постепенно реальные свойства, пока не стал, наконец, основой физики.

Прежде всего Жан Перрен в 1895 году окончательно доказал: заряд катодных лучей отрицателен. В течение последующих двух лет выяснили: их скорость равна примерно одной десятой скорости света, то есть примерно в 10000 раз больше скорости ружейной пули и скорости теплового движения атомов. Кроме того, эти и все остальные свойства лучей не зависят от состава газа в трубке. А это означало, что катодные частицы — непременная составная часть всех атомов.

И наконец, в 1897 году Дж. Дж. Томсону удалось определить заряд е и массу m отдельного «атома электричества».

Оказалось, что масса этих частиц (≈10-27 г) примерно в тысячу раз меньше массы атома водорода, а заряд (е ≈ 5•10-10 CGSE) почти точно равнялся тому заряду иона водорода, который был измерен при изучении электролиза.

Это было неожиданно. Посудите сами: явления электролиза и проводимости газов изучали разные науки, которые развивались независимо друг от друга, и в них на протяжении десятилетий сформировались свои понятия. И вдруг они оказались тесно связанными. «Такие факты в истории науки, — говорил ученик Планка нобелевский лауреат Макс Лауэ, — самое сильное доказательство ее истинности». Для физиков такие события всегда праздник, и мы еще посетим подобные перекрестки науки.

История электрона — хороший способ усвоить логику открытий нынешней физики: исходя из наблюдений, ученые выдвигают на их основе гипотезы, которые вновь проверяют опытом, и, наконец, этот процесс завершается теорией, то есть сжатым, объяснением частных явлений на основе немногих общих принципов. Гипотеза об электроне возникла из наблюдений Фарадея, Плюккера и Крукса. Плодотворность ее была проверена и доказана в опытах Дж. Дж. Томсона и других физиков.

И наконец, Гендрик Антон Лоренц (1853—1928) настолько поверил в реальность электрона, что создал на основе этой гипотезы теорию, следствия из которой вновь можно было проверить.

Процесс этот беспределен, но это единственный способ движения науки.

Возвратимся, однако, в 1897 год, когда после сорокалетних усилий получила права гражданства первая «элементарная частица» — электрон. Это было самое важное событие в физике со времени признания реальности атома. В тот год узнали, что существуют частицы значительно меньше атомов, что они входят в состав всех атомов; что не только материя, но и электричество имеет атомистическую структуру. Все это означало, что в природе реально существует материальный носитель наименьшего заряда.

Как и атом, электрон признали далеко не сразу. Еще в 1902 году Оливер Лодж писал: «...электрон — это чисто гипотетический заряд, изолированный от атома». И даже в 1920 году великий Рентген запрещал сотрудникам своего института произносить это слово.

Сейчас эти сомнения трудно понять.

Физики, сразу поверившие в реальность электронов, тщательно измеряли его характеристики: заряд е и массу m. Благодаря их трудам (особенно трудам Роберта Милликена, который с 1909 по 1940 год периодически возвращался к этой задаче) мы сейчас знаем эти числа с большой точностью: m = 9,1083•10-28 г, е=4,80274•10-10 CGSE.

А размер? Каковы размеры электрона? Увы, нам это неизвестно до сих пор. Мы не знаем даже, имеет ли вообще этот вопрос четкий смысл. В самом деле, о свойствах электрона мы узнаём, изучая его взаимодействия с другими частицами и полями. Но для понимания результатов всех этих опытов нам достаточно знать только массу и заряд электрона и совершенно ни к чему знать его размеры. Не исключено, что такого свойства у электронов и вправду нет. Ведь нельзя же указать толщину экватора, хотя длину его измерить можно. Или, быть может, величина электрона зависит от условий опыта? Такую возможность тоже нельзя отрицать заранее; ведь изменяет же комета свои размеры, приближаясь к Солнцу, хотя масса ее при этом остается постоянной. Все это не праздные вопросы и мы к ним еще возвратимся.

предыдущая главасодержаниеследующая глава





Rambler s Top100 Рейтинг@Mail.ru
© Злыгостев Алексей Сергеевич, 2001-2017
При копировании материалов активная ссылка обязательна:
http://nplit.ru 'NPLit.ru: Библиотека юного исследователя'