ЛУЧИ
Cолнечный луч, если внимательно за ним проследить, может привести к порогу квантовой физики. Весьма вероятно, что вам этот переход не кажется пока убедительным. Но ощущение произвола, которое испытывает человек при первом знакомстве с теорией Планка, на самом деле обманчиво. Формула Планка не результат умозрения, она появилась лишь после длительного анализа точных опытов. Конечно, чтобы придумать ее, одного анализа мало: необходима еще и сила мысли, и взлет фантазии, и смелость перед лицом неожиданных следствий теории.
Ученые Релей, Джинс, Вин и до Планка предлагали различные формулы для описания спектра абсолютно черного тела. Но каждый раз экспериментаторы Отто Люммер (1860—1925) и Эрнст Принсгейм (1859—1917) после тщательного измерения этого спектра решительно отвергали их, как несовершенные. Только формула Планка удовлетворила их: она поразительно совпала с результатами их опытов, хотя и не становилась от этого более понятной.
Последуем примеру этих физиков и рассмотрим строение солнечного луча еще внимательнее, чем мы это делали до сих пор. В дальнейшем мы увидим, как много информации он с собой несет, и надо только научиться ее читать.
Если пропустить луч солнца через призму, то на экране позади нее возникает спектр — явление обычное, и за двести лет к нему привыкли. На первый взгляд между отдельными частями спектра нет резких границ: красный непрерывно переходит в оранжевый, оранжевый в желтый и т. д.
Так и думали до тех пор, пока в 1802 году английский врач и химик Уильям Хайд Волластон (1766— 1828) не рассмотрел этот спектр более пристально. Он обнаружил при этом несколько резких темных линий, которые без видимого порядка пересекали спектр Солнца в разных местах. Он не придал им особого значения, полагая, что их появление зависит либо от качества призмы, либо от источника света, либо от других побочных причин. Да и сами линии он считал интересными только потому, что они отделяют друг от друга цветные полосы спектра. Впоследствии эти темные линии назвали фраунгоферовыми — по имени их настоящего исследователя, а не первооткрывателя.
Иосиф Фраунгофер (1787—1826) прожил недолго, но у него была удивительная судьба. В 11 лет, после смерти родителей, он пошел в ученье к шлифовальных дел мастеру. Работать приходилось так много, что на школу уже не оставалось времени, и потому до 14 лет он не умел ни читать, ни писать. Но однажды дом хозяина рухнул; и случилось так, что пока Фраунгофера извлекали из-под обломков, мимо проезжал наследный принц. Он пожалел юношу и вручил ему значительную сумму денег. Их оказалось достаточно, чтобы Иосиф смог купить себе шлифовальный станок и даже начать учиться.
То было время наполеоновских войн и больших перемен в Европе. А Фраунгофер между тем в заштатном городке Бенедиктбейрене учился, шлифовал оптические стекла и тщательно исследовал темные линии в спектре Солнца. Он насчитал их там 574, дал главным названия и указал их точное местоположение в спектре. Положение это было строго неизменным, в частности, всегда в одном и том же месте желтой части спектра появлялась резкая двойная линия, которую Фраунгофер назвал линией D.
И еще один важный факт установил Фраунгофер: в спектре пламени спиртовки на том же самом месте, где и темная линия D в спектре Солнца, всегда присутствует яркая двойная желтая линия. Значение этого факта оценили только много лет спустя.
В 1819 году Фраунгофер переехал в Мюнхен и стал там профессором, членом Академии наук и хранителем физического кабинета. Продолжая свои исследования темных линий в спектре Солнца, он убедился, что их причина не оптический обман, а сама природа солнечного света. Побуждаемый странной природой этих линий к дальнейшим наблюдениям, он открыл их затем в спектре Венеры и Сириуса.
Иосиф Фраунгофер умер и похоронен в Мюнхене в 1826 году. На его могиле надпись: «Approximavit sidera — Приблизил звезды». Но лучший памятник ему — его открытия.
Среди открытий Фраунгофера для нас особенно важно сейчас его наблюдение над двойной D-линией. Тогда, в 1814 году, когда он опубликовал свои исследования, на это наблюдение особого внимания не обратили. Однако труды его не пропали: прошло 43 года, и Вильям Сван (1828—1914) установил, что двойная желтая линия D в спектре пламени спиртовки возникает в присутствии металла натрия. (Его следы в составе поваренной соли почти всегда можно найти в различных веществах, и в спиртовке — тоже.) Как и многие до него, Сван не понял значения своего открытия и потому не сказал решающих слов: «Эта линия принадлежит металлу натрию».
К этой простой и важной мысли пришли только два года спустя (в 1859 году) два профессора: Густав Роберт Кирхгоф (1824—1887) и Роберт Вильгельм Бунзен (1811—1899). В Гейдельберге, в старой университетской лаборатории, они поставили несложный опыт. До них через призму пропускали либо только луч Солнца, либо только свет от спиртовки. Кирхгоф и Бунзен пропустили и то и другое сразу и обнаружили явление, о котором стоит рассказать подробно.
Если на призму падал только луч Солнца, то на шкале спектроскопа они видели спектр Солнца с темной линией D на своем обычном месте. Темная линия по-прежнему оставалась на месте и в том случае, когда исследователи ставили на пути луча горящую спиртовку. Но когда на пути солнечного луча они ставили экран и освещали призму только светом спиртовки, то на месте темной линии D четко проявлялась яркая желтая линия D натрия. Кирхгоф и Бунзен убирали экран — линия D вновь становилась темной.
Опыт
Потом они луч Солнца заменяли светом от раскаленного тела — результат был всегда тот же: на месте ярко-желтой линии возникала темная. То есть всегда пламя спиртовки поглощало те лучи, которые оно само испускало.
Чтобы понять, почему это событие взволновало двух профессоров, проследим за их рассуждениями.
Ярко-желтая линия D в спектре пламени спиртовки возникает в присутствии натрия.
В спектре Солнца на этом же месте находится темная линия неизвестной природы.
Спектр луча от любого раскаленного тела — сплошной, и в нем нет темных линий. Однако если пропустите такой луч через пламя спиртовки, то его спектр ничем не отличается от спектра Солнца — в нем также присутствует темная линия и на том же самом месте. Но природу этой темной линии мы уже почти знаем во всяком случае, мы можем догадываться, что она принадлежит натрию.
Следовательно, в зависимости от условий наблюдения линия D натрия может быть либо ярко-желтой, либо темной на желтом фоне. Но в обоих случаях присутствие этой линии (все равно какой — желтой или темной!) означает, что в пламени спиртовки есть натрий.
А поскольку такая линия спектра пламени спиртовки в проходящем свете совпадает с темной линией D в спектре Солнца, то, значит, и на Солнце есть натрий. Причем он находится в газовом внешнем облаке, которое освещено изнутри раскаленным ядром Солнца.
Короткая заметка (всего две страницы), которую написал Кирхгоф в 1859 году, содержала сразу четыре открытия:
у каждого элемента есть свой линейчатый спектр, то есть строго определенный набор линий;
эти линии можно использовать для анализа состава веществ не только на Земле, но и на звездах;
Солнце состоит из горячего ядра и сравнительно холодной атмосферы раскаленных газов;
на Солнце есть натрий.
Первые три открытия были вскоре подтверждены, в том числе и гипотеза о строении Солнца: экспедиция, которую Французская академия наук в 1868 году во главе с астрономом Жансеном послала в Индию, обнаружила, что при полном солнечном затмении — в тот момент, когда его раскаленное ядро закрыто тенью Луны и светит только корона, — все темные линии в спектре Солнца вспыхивают ярким светом.
Вторую гипотезу сами Киргхоф и Бунзен уже в следующем году не только подтвердили, но и воспользовались ею для открытия двух новых элементов: рубидия и цезия.
В дальнейшем из этого скромного наблюдения над желтой двойной D-линией натрия родился спектральный анализ, с помощью которого мы теперь можем узнавать химический состав далеких галактик, измерять температуру и скорость вращения звезд и многое другое.
Наюлюдение
Все это действительно интересно, но сейчас нам важно понять главное: что дали открытия Кирхгофа и Бунзена для науки об атоме и какова их связь с нашими прежними знаниями о нем?
Мы знаем теперь два вида спектров: сплошной (или тепловой) и линейчатый.
Тепловой спектр содержит все длины волн, излучается он при нагревании твердых тел и не зависит от их природы.
Линейчатый спектр состоит из набора отдельных резких линий, возникает при нагревании газов и паров (когда малы взаимодействия между атомами), и — что особенно важно - этот набор линий неповторим для любого элемента. Более того, линейчатые спектры элементов не зависят от вида химических соединений, составленных из этих элементов. Следовательно, их причину надо искать в свойствах атомов.
То, что элементы однозначно и вполне определяются видом линейчатого спектра, вскоре признали все: но то, что этот же спектр характеризует отдельный атом, осознали не сразу, а лишь в 1874 году благодаря работам знаменитого английского астрофизика Нормана Локьера (1836—1920) А когда осознали, сразу же пришли к неизбежному выводу: поскольку линейчатый спектр возникает внутри отдельного атома, то атом должен иметь структуру, то есть иметь составные части!