Вот оно, «еще одно великое открытие»
История открытия, о котором пойдет речь в этой главе, началась в 1912 году, когда американский астроном Весто Мелвин Слайфер предпринял на ловелловской обсерватории исследование спектров туманностей. В то время люди еще не знали точно, что собой представляют эти странные туманные пятнышки на небе — то ли действительно облака тумана, то ли скопления невообразимо далеких звезд. Не было уверенности и в том, насколько далеки от нас эти плохо различимые объекты и принадлежат ли они к нашей Галактике или находятся за ее пределами.
Впрочем, приступая к работе, Слайфер все-таки, имел определенное мнение. Касалось оно спектров туманностей. Американский астроном был убежден, что примерно половина спектров всех объектов наблюдения должна быть сдвинута в красную сторону, а половина в фиолетовую.
Причина таких сдвигов объяснялась эффектом Доплера. Суть этого явления заключается в том, что при достаточно больших скоростях движения источников света — в данном случае туманностей — воспринимаемая наблюдателем частота электромагнитных колебаний будет либо увеличиваться при сближении источника света с наблюдателем, либо уменьшаться при удалении от наблюдателя.
Получается, что если туманное пятнышко летит в сторону Земли, длина световых волн должна укорачиваться. Спектральные линии покажутся нам сдвинутыми в фиолетовую область. Если же. туманность летит от Земли, то все происходит наоборот и линии ее спектра должны казаться сдвинутыми в красную область более длинных волн. Это смещение измерялось в относительных величинах и определялось изменением длины испущенной волны к длине волны, принятой наблюдателем Z = Δλn/λn.
Физик Георгий Гамов, чтобы заставить студентов запомнить правило доплеровского эффекта, рассказывал на лекциях такой анекдот. Касался он коллеги Гамова, тоже известного американского физика по имени Роберт Вуд. Однажды в Балтиморе полиция задержала Вуда за то, что он въехал под красный свет. Знаменитый физик блестяще объяснил на суде, что из-за эффекта Доплера, в результате большой скорости его автомобиля, красный свет сдвинулся в фиолетовую сторону спектра до зеленого. И что он как водитель в нарушении не виноват. Судья уже решил было оправдать Вуда. Но, как на грех, в зале оказался студент, только что проваленный Вудом на экзамене. Студент быстро подсчитал скорость, требуемую для превращения красного света в зеленый. И судья, отказавшись от первоначального обвинения, оштрафовал Вуда за превышение скорости.
Вот оно, «еще одно великое открытие»
Приступая к наблюдениям, Слайфер рассуждал так: поскольку никакого преимущественного направления в космосе быть не может, примерно половина туманностей должна от нас удаляться, а половина приближаться. Можно представить себе недовольство исследователя, когда самые тщательные наблюдения показали, что из семнадцати наблюдаемых туманностей лишь две, судя по фиолетовому смещению, приближаются к Земле. Все остальные туманности имели красное смещение. А следовательно, направляли свой полет от нас.
Определение лучевых скоростей по спектральному сдвигу, надо полагать, считалось кропотливой и, по-видимому, довольно малоперспективной работой, потому что почти десять лет Слайфер был едва ли не единственным астрономом, занимающимся этим делом.
К началу двадцатых годов он измерил уже спектральный сдвиг и рассчитал скорости 41 туманного пятна. Почти все они удалялись. Лучевые скорости, рассчитанные по величине красного смещения, распределялись в пределах от 300 до 1800 км/сек — это значительно больше, чем самая высокая из известных в то время лучевых скоростей звезд.
Допустить, что один класс объектов Галактики принципиально только удаляется от нас, означало бы наделить и этот класс, и нашу солнечную систему какой-то исключительностью.
Непонятное поведение слайферовских туманностей заинтересовало еще двух астрономов. Это были Милтон Ла-Салль Хьюмассон, начинавший свою астрономическую карьеру сторожем обсерватории, и штатный астроном-наблюдатель Эдвин Пауэлл Хаббл. Впрочем, Хаббл был едва ли не больше, чем Хьюмассон, «астроном божьей милостью». Окончив Чикагский университет с дипломом адвоката, он в двадцать пять лет поступает в Иеркскую обсерваторию и становится астрономом-наблюдателем. Читатель, обладающий хорошей памятью, наверняка заметит про себя, что подобный случай в астрономии не уникален для прошлых лет. Но сменить так круто специальность в XX столетии — для этого нужно иметь не только мужество, но и истинное призвание к астрономии.
К этому времени в обсерватории на горе Вилсона вошел в строй самый большой телескоп в мире, обладающий зеркалом диаметром в два с половиной метра. И Хаббл вместе с Хьюмассоном начали ювелирную работу, фотографируя слабые туманности с выдержкой в несколько часов, а то и суток. Молодые астрономы виртуозно владели техникой, и наступил день, когда впервые в истории астрономии им удалось увидеть на фотографии туманности Андромеды — звезды. Значит, все-таки туманности имеют звездный состав! А неразличимы они по той причине, что находятся от нас слишком далеко, за пределами нашей собственной звездной системы, нашей Галактики. Потому й предложили называть эти удаленные небесные объекты сначала внегалактическими туманностями. Однако доказательство звездного состава этих туманностей было таким значительным шагом вперед, что английский астроном Харлоу Шепли предложил переименовать внегалактические туманности в «галактики». Тем самым одновременно подчеркивалось колоссальное расширение пределов вселенной, которая оказалась состоящей из множества звездных островов, аналогичных нашему.
Почти всю жизнь посвятил Хаббл исследованию внегалактических туманностей, или галактик, расширив границы нашей вселенной до миллиарда световых лет. Последние десятилетия своей жизни астроном потратил на то, чтобы классифицировать и составить своеобразный каталог галактик. И к 1953 году — последнему году жизни Хаббла — его классификация была в основном готова. В нее вошло около тысячи наиболее ярких галактик северного и частично южного неба.
В 1928 году, фотографируя спектр наиболее слабого и удаленного туманного объекта, Хьюмассое сделал особенно длительную выдержку. Когда пластинка была проявлена, Хаббл вместе с Хьюмассоном углубился в ее изучение. Астрономы не поверили своим глазам. Галактика, обозначенная в каталоге Дрейера как NGC 7619, имела такой красный сдвиг спектра, что расчет ее скорости дал величину 3800 км/сек! Это была совершенно фантастическая в те времена скорость для небесного объекта. С этого момента Хаббл с еще большим вниманием стал исследовать поведение спектров внегалактических объектов.
Постепенно, по мере накопления результатов наблюдений, подтвердилась упомянутая выше странная особенность: почти все галактики, за небольшим исключением, показывали красное смещение. Это значило, что они удаляются от нашей звездной системы. При этом наиболее слабые галактики — самые удаленные от нас — имели это смещение спектра наибольшим. Напрашивался вывод, что далекие звездные острова разлетаются с большими скоростями, чем находящиеся ближе...
К 1929 году Хаббл сообщил, что ему удалось установить фундаментальную закономерность: красное смещение в спектрах галактик Δλ/λ пропорционально расстоянию до галактик.
Это было великим открытием, поражающим воображение. Оно блестяще подтверждало фридмановскую гипотезу расширяющейся вселенной. Если верить тому, что красное смещение спектров далеких галактик действительно следствие эффекта Доплера, то есть вызывается скоростью удаления звездных островов, то галактики должны удаляться со скоростями, пропорциональными их расстояниям:
ν = H·r,
где Н — некоторый коэффициент пропорциональности с размерностью(1/сек.). Для удобства расчетов, чтобы избавиться в ответе от громадных чисел, измеряется Н в других единицах:
H = км/сек. Mгпс
где Mгпс — мегапарсек — расстояние, равное 3,084 • 1019 км. Буква H выбрана для обозначения коэффициента пропорциональности тоже неспроста, а в честь Хаббла (Hubble), именем которого назван этот фундаментальный закон вселенной и сама постоянная.
Вот оно, «еще одно великое открытие» _2
Теперь оставалось определить значение коэффициента H потому, что он определяет время Т, прошедшее от таинственного «нуль-пункта» до наших дней. Для большинства фридмановских моделей время Т (по порядку величины) обратно пропорционально Н(T = 1/H). Однако надежное определение этой мировой константы (H) оказалось весьма непростым делом. Лишь к 1936 году Хаббл пришел к выводу, что H = 540 км/сек на мегапарсек. Отсюда получался срок жизни вселенной:
1 Mгпс/(540 км/сек) = 3,084 · 1019 км / (540 км/сек) = 5,72 · 1016 сек = 1,8 · 109 лет.
То есть всего примерно два миллиарда лет?.. Два миллиарда лет прошло с момента образования нашей вселенной, если применить этот коэффициент для расчета времени фридмановских моделей? Но согласно геологическим данным возраст нашей Земли больше двух с половиной миллиардов лет! Не могла же наша планета образоваться раньше, чем вся вселенная?..
Противники фридмановских моделей пытались использовать этот абсурдный вывод, чтобы подорвать доверие к новой теории. Сторонники общей теории относительности утверждали, что причина расхождения в неточности измерения расстояний до галактик. В общем, «этот странный факт возбудил много спекуляций», — писал Макс Борн.
Само по себе открытие красного смещения позволило части ученых, считавших себя приверженцами теории Эйнштейна — Фридмана, торжествовать победу. Некоторые даже считали, что теперь эта теория полностью и вполне надежно обоснована экспериментально. Другая часть, наоборот, стала возражать не только против модели расширяющейся вселенной, но и против всех выводов общей теории относительности. Короче, в среде физиков-теоретиков, астрономов и философов начался бурный идейный разброд. Было высказано недоверие к интерпретации красного смещения как результата эффекта Доплера. Стали лихорадочно искать другие объяснения наблюдаемому явлению.
Одна из гипотез, имевших довольно большую популярность в то время, утверждала, что частицы света — фотоны, путешествуя по вселенной, теряют часть своей энергии. Энергия же фотона пропорциональна его частоте и, следовательно, обратно пропорциональна длине волны. Значит с уменьшением энергии фотона длина волны излучаемого света должна увеличиваться. И весь спектр удаленного объекта оказывается таким образом смещенным в красную сторону. При этом нет никакого разбегания. Величина смещения спектра должна быть пропорциональна расстоянию, пройденному светом, и все!..
Лет двадцать назад эта гипотеза вполне серьезно обсуждалась на теоретических симпозиумах. Но потом оказалось, что она требовала отказа от одного из основных законов природы — закона сохранения энергии. Ибо ежели энергия фотонами терялась, никуда не передаваясь, принцип сохранения энергии явно нарушался. Ежели же фотоны передавали часть своей энергии некой среде или другим фотонам, путь их должен был искривляться. Следовательно, изображения далеких галактик не могли принципиально быть четкими. Они обязаны были приходить к нам размытыми. И чем больше было до них расстояние, тем больше они должны были «размываться». Очертания же даже самых далеких и слабых галактик получались на негативах астрономических фотосъемок такими же четкими, как и ближайших к нам звездных систем...
Вторая гипотеза гласила: предположим, что фотон неожиданно распадается на фотон меньшей энергии и некие частицы. Почему? Неизвестно! Просто распадается, и все, если ему приходится долго путешествовать. Эту гипотезу подверг резкой критике молодой талантливый советский физик-теоретик М. П. Бронштейн (1906—1938). Он работал с Л. Д. Ландау, первым в нашей стране стал заниматься квантовой теорией тяготения и фактически заложил ее основы. Он был бы, безусловно, выдающимся ученым — гордостью советской науки, если бы не трагическая гибель в 1938 году.
Критикуя гипотезу распада фотона, М. П. Бронштейн доказал, что, приняв подобное свойство световых квантов, мы получили бы различное красное смещение от разных участков спектров одного объекта. Кроме того, линии спектра неизбежно должны тогда расширяться, и радиоволны от далеких источников к нам не доходили бы вообще, они бы распадались.
В конце концов всем специалистам, всем скептикам мира пришлось согласиться с тем, что иного толкования красного смещения, кроме космологического, основанного на эффекте Доплера, быть не может. И в настоящее время нет ни одной приемлемой гипотезы, которая объясняла бы три основных свойства красного смещения иначе, чем доплеровским эффектом. А свойства эти такие:
1. Независимость красного смещения от длины волны спектра.
2. Закон Хаббла — ν = H · r,
3. Изотропность красного смещения, то есть его независимость от направления.
Правда, оставалось возражение, которое основывалось на несовпадении возраста вселенной по расчетам Хаббла с возрастом Земли по данным геологов. Почти двадцать лет астрономы мирились с этим. Двадцать лет Земля была старше вселенной. Лишь в конце пятидесятых годов усилиями нового поколения астрономов был осуществлен пересмотр шкалы внегалактических расстояний, приведший к тому, что постоянная Хаббла — мировая константа Н — оказалась в шесть-семь раз меньше той, которую определил сам Хаббл.
Обычно сегодня считают, что H = 75 / 100 (км/сек) · Mгпс.
Понятно, что переход на новую шкалу увеличил и расстояния до галактик, увеличил и время жизни вселенной, сведя его к приемлемой величине. Действительно, теперь
T = 1/H = 1 Mгпс/(100/75) км/сек = 3,086 · 1019 км/ (100/75) км/сек = (10/13)· 109 лет.
Пришло время для того, чтобы попытаться определить горизонты окружающего нас мира.